1
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA structure and dynamics with deep learning and solution scattering. Biophys J 2025; 124:549-564. [PMID: 39722452 PMCID: PMC11866959 DOI: 10.1016/j.bpj.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against 14 experimental data sets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598075. [PMID: 39764023 PMCID: PMC11702515 DOI: 10.1101/2024.06.08.598075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce Solution Conformation Predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep-learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against fourteen experimental datasets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
3
|
Neyra K, Everson HR, Mathur D. Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. Anal Chem 2024; 96:3687-3697. [PMID: 38353660 PMCID: PMC11261746 DOI: 10.1021/acs.analchem.3c04176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA nanotechnology is rapidly gaining traction in numerous applications, each bearing varying degrees of tolerance to the quality and quantity necessary for viable nanostructure function. Despite the distinct objectives of each application, they are united in their reliance on essential analytical techniques, such as purification and characterization. This tutorial aims to guide the reader through the current state of DNA nanotechnology analytical chemistry, outlining important factors to consider when designing, assembling, purifying, and characterizing a DNA nanostructure for downstream applications.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| |
Collapse
|
4
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Kolbeck P, Dass M, Martynenko IV, van Dijk-Moes RJA, Brouwer KJH, van Blaaderen A, Vanderlinden W, Liedl T, Lipfert J. DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. NANO LETTERS 2023; 23:1236-1243. [PMID: 36745573 PMCID: PMC9951250 DOI: 10.1021/acs.nanolett.2c04299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/25/2022] [Indexed: 06/01/2023]
Abstract
Atomic force microscopy (AFM) is a powerful technique for imaging molecules, macromolecular complexes, and nanoparticles with nanometer resolution. However, AFM images are distorted by the shape of the tip used. These distortions can be corrected if the tip shape can be determined by scanning a sample with features sharper than the tip and higher than the object of interest. Here we present a 3D DNA origami structure as fiducial for tip reconstruction and image correction. Our fiducial is stable under a broad range of conditions and has sharp steps at different heights that enable reliable tip reconstruction from as few as ten fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
Collapse
Affiliation(s)
- Pauline
J. Kolbeck
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Mihir Dass
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Irina V. Martynenko
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Relinde J. A. van Dijk-Moes
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Kelly J. H. Brouwer
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Alfons van Blaaderen
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Willem Vanderlinden
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| | - Tim Liedl
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
| | - Jan Lipfert
- Department
of Physics and Center for NanoScience, LMU
Munich, Amalienstrasse 54, 80799Munich, Germany
- Department
of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CCUtrecht, The Netherlands
| |
Collapse
|
7
|
Kesici MZ, Tinnefeld P, Vera AM. A simple and general approach to generate photoactivatable DNA processing enzymes. Nucleic Acids Res 2021; 50:e31. [PMID: 34904657 PMCID: PMC8989547 DOI: 10.1093/nar/gkab1212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
DNA processing enzymes, such as DNA polymerases and endonucleases, have found many applications in biotechnology, molecular diagnostics, and synthetic biology, among others. The development of enzymes with controllable activity, such as hot-start or light-activatable versions, has boosted their applications and improved the sensitivity and specificity of the existing ones. However, current approaches to produce controllable enzymes are experimentally demanding to develop and case-specific. Here, we introduce a simple and general method to design light-start DNA processing enzymes. In order to prove its versatility, we applied our method to three DNA polymerases commonly used in biotechnology, including the Phi29 (mesophilic), Taq, and Pfu polymerases, and one restriction enzyme. Light-start enzymes showed suppressed polymerase, exonuclease, and endonuclease activity until they were re-activated by an UV pulse. Finally, we applied our enzymes to common molecular biology assays and showed comparable performance to commercial hot-start enzymes.
Collapse
Affiliation(s)
- Merve-Zeynep Kesici
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München 81377, Germany
| | - Andrés Manuel Vera
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, München 81377, Germany
| |
Collapse
|
8
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
9
|
Jiang S, Pal N, Hong F, Fahmi NE, Hu H, Vrbanac M, Yan H, Walter NG, Liu Y. Regulating DNA Self-Assembly Dynamics with Controlled Nucleation. ACS NANO 2021; 15:5384-5396. [PMID: 33705654 DOI: 10.1021/acsnano.1c00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the nucleation step of a self-assembly system is essential for engineering structural complexity and dynamic behaviors. Here, we design a "frame-filling" model system that comprises one type of self-complementary DNA tile and a hosting DNA origami frame to investigate the inherent dynamics of three general nucleation modes in nucleated self-assembly: unseeded, facet, and seeded nucleation. Guided by kinetic simulation, which suggested an optimal temperature range to differentiate the individual nucleation modes, and complemented by single-molecule observations, the transition of tiles from a metastable, monomeric state to a stable, polymerized state through the three nucleation pathways was monitored by Mg2+-triggered kinetic measurements. The temperature-dependent kinetics for all three nucleation modes were correlated by a "nucleation-growth" model, which quantified the tendency of nucleation using an empirical nucleation number. Moreover, taking advantage of the temperature dependence of nucleation, tile assembly can be regulated externally by the hosting frame. An ultraviolet (UV)-responsive trigger was integrated into the frame to simultaneously control "when" and "where" nucleation started. Our results reveal the dynamic mechanisms of the distinct nucleation modes in DNA tile-based self-assembly and provide a general strategy for controlling the self-assembly process.
Collapse
Affiliation(s)
- Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nibedita Pal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fan Hong
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Huiyu Hu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthew Vrbanac
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
10
|
Spinozzi F, Ortore MG, Nava G, Bomboi F, Carducci F, Amenitsch H, Bellini T, Sciortino F, Mariani P. Gelling without Structuring: A SAXS Study of the Interactions among DNA Nanostars. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10387-10396. [PMID: 32787014 PMCID: PMC8010795 DOI: 10.1021/acs.langmuir.0c01520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
We evaluate, by means of synchrotron small-angle X-ray scattering, the shape and mutual interactions of DNA tetravalent nanostars as a function of temperature in both the gas-like state and across the gel transition. To this end, we calculate the form factor from coarse-grained molecular dynamics simulations with a novel method that includes hydration effects; we approximate the radial interaction of DNA nanostars as a hard-sphere potential complemented by a repulsive and an attractive Yukawa term; and we predict the structure factors by exploiting the perturbative random phase approximation of the Percus-Yevick equation. Our approach enables us to fit all the data by selecting the particle radius and the width and amplitude of the attractive potential as free parameters. We determine the evolution of the structure factor across gelation and detect subtle changes of the effective interparticle interactions, that we associate to the temperature and concentration dependence of the particle size. Despite the approximations, the approach here adopted offers new detailed insights into the structure and interparticle interactions of this fascinating system.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Maria Grazia Ortore
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Giovanni Nava
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Francesca Bomboi
- Department
of Physics, Sapienza, Università
di Roma, 00185 Rome, Italy
| | - Federica Carducci
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| | - Heinz Amenitsch
- Institute
for Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Tommaso Bellini
- Department
of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Paolo Mariani
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, 60131 Ancona, Italy
| |
Collapse
|
11
|
Site-specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proc Natl Acad Sci U S A 2020; 117:22823-22832. [PMID: 32868439 DOI: 10.1073/pnas.2005217117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.
Collapse
|
12
|
Snodin BEK, Schreck JS, Romano F, Louis AA, Doye JPK. Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res 2019; 47:1585-1597. [PMID: 30605514 PMCID: PMC6379721 DOI: 10.1093/nar/gky1304] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/17/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023] Open
Abstract
We use the oxDNA coarse-grained model to provide a detailed characterization of the fundamental structural properties of DNA origami, focussing on archetypal 2D and 3D origami. The model reproduces well the characteristic pattern of helix bending in a 2D origami, showing that it stems from the intrinsic tendency of anti-parallel four-way junctions to splay apart, a tendency that is enhanced both by less screened electrostatic interactions and by increased thermal motion. We also compare to the structure of a 3D origami whose structure has been determined by cryo-electron microscopy. The oxDNA average structure has a root-mean-square deviation from the experimental structure of 8.4 Å, which is of the order of the experimental resolution. These results illustrate that the oxDNA model is capable of providing detailed and accurate insights into the structure of DNA origami, and has the potential to be used to routinely pre-screen putative origami designs and to investigate the molecular mechanisms that regulate the properties of DNA origami.
Collapse
Affiliation(s)
- Benedict E K Snodin
- Physical, and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - John S Schreck
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universit Ca' Foscari, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| | - Jonathan P K Doye
- Physical, and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
13
|
Zhu B, Guo J, Zhang L, Pan M, Jing X, Wang L, Liu X, Zuo X. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes. Chembiochem 2019; 20:1508-1513. [PMID: 30702811 DOI: 10.1002/cbic.201800727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Indexed: 11/09/2022]
Abstract
One-dimensional nanotubes are of considerable interest in materials and biochemical sciences. A particular desire is to create DNA nanotubes with user-defined structural features and biological relevance, which will facilitate the application of these nanotubes in the controlled release of drugs, templating of other materials into linear arrays and the construction of artificial membrane channels. However, little is known about the structures of assembled DNA nanotubes in solution. Here we report an in situ exploration of segmented DNA nanotubes, composed of multiple units with set length distributions, by using synchrotron small-angle X-ray scattering (SAXS). Through joint experimental and theoretical studies, we show that the SAXS data are highly informative in the context of heterogeneous mixtures of DNA nanotubes. The structural parameters obtained by SAXS are in good agreement with those determined by atomic force microscopy (AFM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). In particular, the SAXS data revealed important structural information on these DNA nanotubes, such as the in-solution diameters (≈25 nm), which could be obtained only with difficulty by use of other methods. Our results establish SAXS as a reliable structural analysis method for long DNA nanotubes and could assist in the rational design of these structures.
Collapse
Affiliation(s)
- Bowen Zhu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingyang Guo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lixia Zhang
- Jiading District Central Hospital, Shanghai, 201800, China
| | - Muchen Pan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xinxin Jing
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 201800, China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Oliver RC, Rolband LA, Hutchinson-Lundy AM, Afonin KA, Krueger JK. Small-Angle Scattering as a Structural Probe for Nucleic Acid Nanoparticles (NANPs) in a Dynamic Solution Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E681. [PMID: 31052508 PMCID: PMC6566709 DOI: 10.3390/nano9050681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
Abstract
Nucleic acid-based technologies are an emerging research focus area for pharmacological and biological studies because they are biocompatible and can be designed to produce a variety of scaffolds at the nanometer scale. The use of nucleic acids (ribonucleic acid (RNA) and/or deoxyribonucleic acid (DNA)) as building materials in programming the assemblies and their further functionalization has recently established a new exciting field of RNA and DNA nanotechnology, which have both already produced a variety of different functional nanostructures and nanodevices. It is evident that the resultant architectures require detailed structural and functional characterization and that a variety of technical approaches must be employed to promote the development of the emerging fields. Small-angle X-ray and neutron scattering (SAS) are structural characterization techniques that are well placed to determine the conformation of nucleic acid nanoparticles (NANPs) under varying solution conditions, thus allowing for the optimization of their design. SAS experiments provide information on the overall shapes and particle dimensions of macromolecules and are ideal for following conformational changes of the molecular ensemble as it behaves in solution. In addition, the inherent differences in the neutron scattering of nucleic acids, lipids, and proteins, as well as the different neutron scattering properties of the isotopes of hydrogen, combined with the ability to uniformly label biological macromolecules with deuterium, allow one to characterize the conformations and relative dispositions of the individual components within an assembly of biomolecules. This article will review the application of SAS methods and provide a summary of their successful utilization in the emerging field of NANP technology to date, as well as share our vision on its use in complementing a broad suite of structural characterization tools with some simulated results that have never been shared before.
Collapse
Affiliation(s)
- Ryan C Oliver
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Lewis A Rolband
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | | - Kirill A Afonin
- UNC Charlotte Chemistry Department, Charlotte, NC 28223, USA.
| | | |
Collapse
|
15
|
Mathur D, Medintz IL. The Growing Development of DNA Nanostructures for Potential Healthcare-Related Applications. Adv Healthc Mater 2019; 8:e1801546. [PMID: 30843670 PMCID: PMC9285959 DOI: 10.1002/adhm.201801546] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Indexed: 12/21/2022]
Abstract
DNA self-assembly has proven to be a highly versatile tool for engineering complex and dynamic biocompatible nanostructures from the bottom up with a wide range of potential bioapplications currently being pursued. Primary among these is healthcare, with the goal of developing diagnostic, imaging, and drug delivery devices along with combinatorial theranostic devices. The path to understanding a role for DNA nanotechnology in biomedical sciences is being approached carefully and systematically, starting from analyzing the stability and immune-stimulatory properties of DNA nanostructures in physiological conditions, to estimating their accessibility and application inside cellular and model animal systems. Much remains to be uncovered but the field continues to show promising results toward developing useful biomedical devices. This review discusses some aspects of DNA nanotechnology that makes it a favorable ingredient for creating nanoscale research and biomedical devices and looks at experiments undertaken to determine its stability in vivo. This is presented in conjugation with examples of state-of-the-art developments in biomolecular sensing, imaging, and drug delivery. Finally, some of the major challenges that warrant the attention of the scientific community are highlighted, in order to advance the field into clinically relevant applications.
Collapse
Affiliation(s)
- Divita Mathur
- Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory Code 6910WashingtonDC20375USA
- College of ScienceGeorge Mason UniversityFairfaxVA22030USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and EngineeringU.S. Naval Research Laboratory Code 6907WashingtonDC20375USA
| |
Collapse
|
16
|
Liu X, Zhao Y, Liu P, Wang L, Lin J, Fan C. Biomimetische DNA‐Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer Kanäle. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 201240 China
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Yan Zhao
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Pi Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
- Biodesign CenterTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
- Biodesign CenterTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular MedicineRenji HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 201240 China
- Division of Physical Biology & Bioimaging CenterShanghai Synchrotron Radiation FacilityCAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
17
|
Liu X, Zhao Y, Liu P, Wang L, Lin J, Fan C. Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angew Chem Int Ed Engl 2019; 58:8996-9011. [PMID: 30290046 DOI: 10.1002/anie.201807779] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/25/2018] [Indexed: 01/04/2023]
Abstract
Biomacromolecular nanotubes play important physiological roles in transmembrane ion/molecule channeling, intracellular transport, and inter-cellular communications. While genetically encoded protein nanotubes are prevalent in vivo, the in vitro construction of biomimetic DNA nanotubes has attracted intense interest with the rise of structural DNA nanotechnology. The abiotic use of DNA assembly provides a powerful bottom-up approach for the rational construction of complex materials with arbitrary size and shape at the nanoscale. More specifically, a typical DNA nanotube can be assembled either with parallel-aligned DNA duplexes or by closing DNA tile lattices. These artificial DNA nanotubes can be tailored and site-specifically modified to realize biomimetic functions including ionic or molecular channeling, bioreactors, drug delivery, and biomolecular sensing. In this Minireview, we aim to summarize recent advances in design strategies, including the characterization and applications of biomimetic DNA nanotubes.
Collapse
Affiliation(s)
- Xiaoguo Liu
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201240, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yan Zhao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Pi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University, Tianjin, 300353, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University, Tianjin, 300353, China.,Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201240, China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
18
|
Gerling T, Dietz H. Reversible Covalent Stabilization of Stacking Contacts in DNA Assemblies. Angew Chem Int Ed Engl 2019; 58:2680-2684. [PMID: 30694591 PMCID: PMC6984961 DOI: 10.1002/anie.201812463] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Indexed: 11/07/2022]
Abstract
Stacking bonds formed between two blunt-ended DNA double helices can be used to reversibly stabilize higher-order complexes that are assembled from rigid DNA components. Typically, at low cation concentrations, stacking bonds break and thus higher-order complexes disassemble. Herein, we present a site-specific photochemical mechanism for the reversible covalent stabilization of stacking bonds in DNA assemblies. To this end, we modified one blunt end with the 3-cyanovinylcarbazole (cnv K) moiety and positioned a thymine residue (T) at the other blunt end. In the bound state, the two blunt-ended helices are stacked together, resulting in a co-localization of cnv K and T. Such a configuration induces the formation of a covalent bond across the stacking contact upon irradiation with 365 nm light. This bond can also be cleaved upon irradiation with 310 nm light, allowing repeated formation and cleavage of the same covalent bond on the timescale of seconds. Our system will expand the range of conditions under which stacking-bond-stabilized objects may be utilized.
Collapse
Affiliation(s)
- Thomas Gerling
- Physik Department, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| | - Hendrik Dietz
- Physik Department, Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, 85748, Garching, Germany
| |
Collapse
|
19
|
Gerling T, Dietz H. Reversible Covalent Stabilization of Stacking Contacts in DNA Assemblies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Gerling
- Physik DepartmentWalter Schottky InstituteTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Hendrik Dietz
- Physik DepartmentWalter Schottky InstituteTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
20
|
Blanco MA, Hatch HW, Curtis JE, Shen VK. A methodology to calculate small-angle scattering profiles of macromolecular solutions from molecular simulations in the grand-canonical ensemble. J Chem Phys 2018; 149:084203. [PMID: 30193476 DOI: 10.1063/1.5029274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The theoretical framework to evaluate small-angle scattering (SAS) profiles for multi-component macromolecular solutions is re-examined from the standpoint of molecular simulations in the grand-canonical ensemble, where the chemical potentials of all species in solution are fixed. This statistical mechanical ensemble resembles more closely scattering experiments, capturing concentration fluctuations that arise from the exchange of molecules between the scattering volume and the bulk solution. The resulting grand-canonical expression relates scattering intensities to the different intra- and intermolecular pair distribution functions, as well as to the distribution of molecular concentrations on the scattering volume. This formulation represents a generalized expression that encompasses most of the existing methods to evaluate SAS profiles from molecular simulations. The grand-canonical SAS methodology is probed for a series of different implicit-solvent, homogeneous systems at conditions ranging from dilute to concentrated. These systems consist of spherical colloids, dumbbell particles, and highly flexible polymer chains. Comparison of the resulting SAS curves against classical methodologies based on either theoretical approaches or canonical simulations (i.e., at a fixed number of molecules) shows equivalence between the different scattering intensities so long as interactions between molecules are net repulsive or weakly attractive. On the other hand, for strongly attractive interactions, grand-canonical SAS profiles deviate in the low- and intermediate-q range from those calculated in a canonical ensemble. Such differences are due to the distribution of molecules becoming asymmetric, which yields a higher contribution from configurations with molecular concentrations larger than the nominal value. Additionally, for flexible systems, explicit discrimination between intra- and inter-molecular SAS contributions permits the implementation of model-free, structural analysis such as Guinier's plots at high molecular concentrations, beyond what the traditional limits are for such analysis.
Collapse
Affiliation(s)
- Marco A Blanco
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Harold W Hatch
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Vincent K Shen
- Chemical Informatics Group, Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
21
|
Baker MAB, Tuckwell AJ, Berengut JF, Bath J, Benn F, Duff AP, Whitten AE, Dunn KE, Hynson RM, Turberfield AJ, Lee LK. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering. ACS NANO 2018; 12:5791-5799. [PMID: 29812934 DOI: 10.1021/acsnano.8b01669] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
Collapse
Affiliation(s)
- Matthew A B Baker
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences , The University of New South Wales , Sydney 2052 , Australia
| | - Andrew J Tuckwell
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences , The University of New South Wales , Sydney 2052 , Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences , The University of New South Wales , Sydney 2052 , Australia
| | - Jonathan Bath
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , Oxford OX1 3PU , United Kingdom
| | - Florence Benn
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , Oxford OX1 3PU , United Kingdom
| | - Anthony P Duff
- Australian Nuclear Science and Technology Organisation , Lucas Heights 2234 , Australia
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation , Lucas Heights 2234 , Australia
| | - Katherine E Dunn
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , Oxford OX1 3PU , United Kingdom
| | - Robert M Hynson
- Structural and Computational Biology Division , The Victor Chang Cardiac Research Institute , Darlinghurst 2010 , Australia
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics , University of Oxford , Parks Road , Oxford OX1 3PU , United Kingdom
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences , The University of New South Wales , Sydney 2052 , Australia
- Structural and Computational Biology Division , The Victor Chang Cardiac Research Institute , Darlinghurst 2010 , Australia
| |
Collapse
|
22
|
Lebedeva NS, Yurina ES, Gubarev YA, Syrbu SA. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:235-241. [PMID: 29625380 DOI: 10.1016/j.saa.2018.03.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3',3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4',4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).
Collapse
Affiliation(s)
- Natalya Sh Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia
| | - Elena S Yurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia
| | - Yury A Gubarev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia.
| | - Sergey A Syrbu
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya, 1, 153045 Ivanovo, Russia
| |
Collapse
|
23
|
Liu P, Zhao Y, Liu X, Sun J, Xu D, Li Y, Li Q, Wang L, Yang S, Fan C, Lin J. Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. Angew Chem Int Ed Engl 2018; 57:5418-5422. [PMID: 29528530 PMCID: PMC6142180 DOI: 10.1002/anie.201801498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/29/2022]
Abstract
Reconfiguration of membrane protein channels for gated transport is highly regulated under physiological conditions. However, a mechanistic understanding of such channels remains challenging owing to the difficulty in probing subtle gating-associated structural changes. Herein, we show that charge neutralization can drive the shape reconfiguration of a biomimetic 6-helix bundle DNA nanotube (6HB). Specifically, 6HB adopts a compact state when its charge is neutralized by Mg2+ ; whereas Na+ switches it to the expanded state, as revealed by MD simulations, small-angle X-ray scattering (SAXS), and FRET characterization. Furthermore, partial neutralization of the DNA backbone charges by chemical modification renders 6HB compact and insensitive to ions, suggesting an interplay between electrostatic and hydrophobic forces in the channels. This system provides a platform for understanding the structure-function relationship of biological channels and designing rules for the shape control of DNA nanostructures in biomedical applications.
Collapse
Affiliation(s)
- Pi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin 300353 (China); Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 (China)
| | - Yan Zhao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 (China)
| | - Xiaoguo Liu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 (China)
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin 300353 (China)
| | - Dede Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin 300353 (China)
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin 300353 (China)
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 (China)
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 (China)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition Case Western Reserve University 10900 Euclid Ave, Cleveland, OH 44106-4988 (USA)
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 (China)
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin 300353 (China); Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 (China)
| |
Collapse
|
24
|
Bruetzel LK, Walker PU, Gerling T, Dietz H, Lipfert J. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch. NANO LETTERS 2018; 18:2672-2676. [PMID: 29554806 DOI: 10.1021/acs.nanolett.8b00592] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembled DNA structures enable creation of specific shapes at the nanometer-micrometer scale with molecular resolution. The construction of functional DNA assemblies will likely require dynamic structures that can undergo controllable conformational changes. DNA devices based on shape complementary stacking interactions have been demonstrated to undergo reversible conformational changes triggered by changes in ionic environment or temperature. An experimentally unexplored aspect is how quickly conformational transitions of large synthetic DNA origami structures can actually occur. Here, we use time-resolved small-angle X-ray scattering to monitor large-scale conformational transitions of a two-state DNA origami switch in free solution. We show that the DNA device switches from its open to its closed conformation upon addition of MgCl2 in milliseconds, which is close to the theoretical diffusive speed limit. In contrast, measurements of the dimerization of DNA origami bricks reveal much slower and concentration-dependent assembly kinetics. DNA brick dimerization occurs on a time scale of minutes to hours suggesting that the kinetics depend on local concentration and molecular alignment.
Collapse
Affiliation(s)
- Linda K Bruetzel
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience , LMU Munich , Amalienstrasse 54 , 80799 Munich , Germany
| | - Philipp U Walker
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience , LMU Munich , Amalienstrasse 54 , 80799 Munich , Germany
| | - Thomas Gerling
- Physik Department , Institute for Advanced Study, Technische Universität München , Am Coulombwall 4a , 85748 Garching , Germany
| | - Hendrik Dietz
- Physik Department , Institute for Advanced Study, Technische Universität München , Am Coulombwall 4a , 85748 Garching , Germany
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich, and Center for Nanoscience , LMU Munich , Amalienstrasse 54 , 80799 Munich , Germany
| |
Collapse
|
25
|
Liu P, Zhao Y, Liu X, Sun J, Xu D, Li Y, Li Q, Wang L, Yang S, Fan C, Lin J. Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300353 China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| | - Yan Zhao
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Xiaoguo Liu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300353 China
| | - Dede Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300353 China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300353 China
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition; Case Western Reserve University; 10900 Euclid Ave Cleveland OH 44106-4988 USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology; Shanghai Institute of Applied Physics, Chinese Academy of Sciences; Shanghai 201800 China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin 300353 China
- Biodesign Center, Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; Tianjin 300308 China
| |
Collapse
|
26
|
Xavier PL, Chandrasekaran AR. DNA-based construction at the nanoscale: emerging trends and applications. NANOTECHNOLOGY 2018; 29:062001. [PMID: 29232197 DOI: 10.1088/1361-6528/aaa120] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The field of structural DNA nanotechnology has evolved remarkably-from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes-in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.
Collapse
Affiliation(s)
- P Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY) and Department of Physics, University of Hamburg, D-22607 Hamburg, Germany. Max-Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
| | | |
Collapse
|
27
|
Sharma R, Schreck JS, Romano F, Louis AA, Doye JPK. Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. ACS NANO 2017; 11:12426-12435. [PMID: 29083876 DOI: 10.1021/acsnano.7b06470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As detailed structural characterizations of large complex DNA nanostructures are hard to obtain experimentally, particularly if they have substantial flexibility, coarse-grained modeling can potentially provide an important complementary role. Such modeling can provide a detailed view of both the average structure and the structural fluctuations, as well as providing insight into how the nanostructure's design determines its structural properties. Here, we present a case study of jointed DNA nanostructures using the oxDNA model. In particular, we consider archetypal hinge and sliding joints, as well as more complex structures involving a number of such coupled joints. Our results highlight how the nature of the motion in these structures can sensitively depend on the precise details of the joints. Furthermore, the generally good agreement with experiments illustrates the power of this approach and suggests the use of such modeling to prescreen the properties of putative designs.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee , Roorkee, 247667, India
| | - John S Schreck
- Department of Chemical Engineering, Columbia University , New York, New York 10027, United States
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca' Foscari Venezia , I-30123 Venezia, Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford , 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
28
|
Abstract
Self-assembled nucleic acids perform biological, chemical, and mechanical work at the nanoscale. DNA-based molecular machines have been designed here to perform work by reacting with cancer-specific miRNA mimics and then regulating gene expression in vitro by tuning RNA polymerase activity. Because RNA production is topologically restrained, the machines demonstrate chromatin analogous gene expression (CAGE). With modular and tunable design features, CAGE has potential for molecular biology, synthetic biology, and personalized medicine applications.
Collapse
Affiliation(s)
| | - William L. Hughes
- Micron School of Materials Science & Engineering
- College of Innovation + Design, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
29
|
Hong F, Zhang F, Liu Y, Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev 2017; 117:12584-12640. [DOI: 10.1021/acs.chemrev.6b00825] [Citation(s) in RCA: 645] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Hong
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
30
|
Mathur D, Medintz IL. Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. Anal Chem 2017; 89:2646-2663. [DOI: 10.1021/acs.analchem.6b04033] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Divita Mathur
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Center
for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, D.C. 20375, United States
| |
Collapse
|
31
|
Xing Y, Liu B, Chao J, Wang L. DNA-based nanoscale walking devices and their applications. RSC Adv 2017. [DOI: 10.1039/c7ra09781f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we review DNA-based nanoscale walking devices including unipedal, bipedal, multipedal, and other novel walking devices and their applications.
Collapse
Affiliation(s)
- Yikang Xing
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Bing Liu
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Jie Chao
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Lianhui Wang
- Institute of Advanced Materials (IAM)
- Jiangsu National Syngerstic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|