1
|
Zhang O, Lew MD. Single-molecule orientation-localization microscopy: Applications and approaches. Q Rev Biophys 2024; 57:e17. [PMID: 39710866 PMCID: PMC11771422 DOI: 10.1017/s0033583524000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
Collapse
Affiliation(s)
- Oumeng Zhang
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew D. Lew
- Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Huijben TA, Mahajan S, Fahim M, Zijlstra P, Marie R, Mortensen KI. Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles. ACS NANO 2024; 18:29832-29845. [PMID: 39411831 PMCID: PMC11526427 DOI: 10.1021/acsnano.4c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles (NPs) have proven their applicability in biosensing, drug delivery, and photothermal therapy, but their performance depends critically on the distribution and number of functional groups on their surface. When studying surface functionalization using super-resolution microscopy, the NP modifies the fluorophore's point-spread function (PSF). This leads to systematic mislocalizations in conventional analyses employing Gaussian PSFs. Here, we address this shortcoming by deriving the analytical PSF model for a fluorophore near a spherical NP. Its calculation is four orders of magnitude faster than numerical approaches and thus feasible for direct use in localization algorithms. We fit this model to individual 2D images from DNA-PAINT experiments on DNA-coated gold NPs and demonstrate extraction of the 3D positions of functional groups with <5 nm precision, revealing inhomogeneous surface coverage. Our method is exact, fast, accessible, and poised to become the standard in super-resolution imaging of NPs for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Teun A.P.M. Huijben
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Sarojini Mahajan
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Masih Fahim
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Kim I. Mortensen
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| |
Collapse
|
3
|
Moon G, Son T, Yoo H, Lee C, Lee H, Im S, Kim D. Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission. LIGHT, SCIENCE & APPLICATIONS 2023; 12:221. [PMID: 37718351 PMCID: PMC10505609 DOI: 10.1038/s41377-023-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023]
Abstract
Optical properties of single emitters can be significantly improved through the interaction with plasmonic structures, leading to enhanced sensing and imaging capabilities. In turn, single emitters can act as sensitive probes of the local electromagnetic field surrounding plasmonic structures, furnishing fundamental insights into their physics and guiding the design of novel plasmonic devices. However, the interaction of emitters in the proximity to a plasmonic nanostructure causes distortion, which hinders precise estimation of position and polarization state and is one of the reasons why detection and quantification of molecular processes yet remain fundamentally challenging in this era of super-resolution. Here, we investigate axially defocused images of a single fluorescent emitter near metallic nanostructure, which encode emitter positions and can be acquired in the far-field with high sensitivity, while analyzing the images with pattern matching algorithm to explore emitter-localized surface plasmon interaction and retrieve information regarding emitter positions. Significant distortion in defocused images of fluorescent beads and quantum dots near nanostructure was observed and analyzed by pattern matching and finite-difference time-domain methods, which revealed that the distortion arises from the emitter interaction with nanostructure. Pattern matching algorithm was also adopted to estimate the lateral positions of a dipole that models an emitter utilizing the distorted defocused images and achieved improvement by more than 3 times over conventional diffraction-limited localization methods. The improvement by defocused imaging is expected to provide a way of enhancing reliability when using plasmonic nanostructure and diversifying strategies for various imaging and sensing modalities.
Collapse
Affiliation(s)
- Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- LG Innotek, Seoul, 07796, South Korea
| | - Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hajun Yoo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
- LG Display, Paju, Gyeonggi-do, 10845, South Korea
| | - Hyunwoong Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Seongmin Im
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
4
|
Cheng X, Liu C, Zhang G, Liu W, Wang J, Duan Y, Chen J, Yang H, Wang S. Resolving plasmonic hotspots by label-free super-resolution microscopy. OPTICS LETTERS 2022; 47:210-213. [PMID: 35030569 DOI: 10.1364/ol.443571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The plasmonic hotspot of metal nanostructures has small dimension far beyond the optical diffraction limit. When trying to locate the hotspot using fluorescent probes, the localization is significantly distorted due to the coupling of emission and surface plasmon. A label-free technique can solve the problem, which uses hotspot emission as the native probe. We demonstrate a super-resolution microscopy investigation based on this idea. By modulating hotspot emission of crossed silver nanowires, which have a pair of plasmonic hotspots approximately 100 nm apart at the intersection, we precisely locate and separate them with nanometer precision. This label-free technique could be applied for analyzing hotspot distribution with high efficiency and precision.
Collapse
|
5
|
Koenderink AF, Tsukanov R, Enderlein J, Izeddin I, Krachmalnicoff V. Super-resolution imaging: when biophysics meets nanophotonics. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:169-202. [PMID: 39633878 PMCID: PMC11501358 DOI: 10.1515/nanoph-2021-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/07/2024]
Abstract
Probing light-matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light-matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers. In bioimaging, the advent of super-resolution single-molecule localization microscopy (SMLM) has opened a completely new perspective for the study and understanding of molecular mechanisms, with unprecedented resolution, which take place inside the cell. Since then, the field of SMLM has been continuously improving, shifting from an initial drive for pushing technological limitations to the acquisition of new knowledge. Interestingly, such developments have become also of great interest for the study of light-matter interaction in nanostructured materials, either dielectric, metallic, or hybrid metallic-dielectric. The purpose of this review is to summarize the recent advances in the field of nanophotonics that have leveraged SMLM, and conversely to show how some concepts commonly used in nanophotonics can benefit the development of new microscopy techniques for biophysics. To this aim, we will first introduce the basic concepts of SMLM and the observables that can be measured. Then, we will link them with their corresponding physical quantities of interest in biophysics and nanophotonics and we will describe state-of-the-art experiments that apply SMLM to nanophotonics. The problem of localization artifacts due to the interaction of the fluorescent emitter with a resonant medium and possible solutions will be also discussed. Then, we will show how the interaction of fluorescent emitters with plasmonic structures can be successfully employed in biology for cell profiling and membrane organization studies. We present an outlook on emerging research directions enabled by the synergy of localization microscopy and nanophotonics.
Collapse
Affiliation(s)
- A. Femius Koenderink
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Roman Tsukanov
- III. Institute of Physics – Biophysics, Georg August University, Friedrich-Hund-Platz 1,37077Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics – Biophysics, Georg August University, Friedrich-Hund-Platz 1,37077Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, 37077Göttingen, Germany
| | - Ignacio Izeddin
- Institut Langevin - Ondes et Images, ESPCI Paris, Université PSL, CNRS, 1, rue Jussieu, 75005Paris, France
| | - Valentina Krachmalnicoff
- Institut Langevin - Ondes et Images, ESPCI Paris, Université PSL, CNRS, 1, rue Jussieu, 75005Paris, France
| |
Collapse
|
6
|
Chattopadhyay S, Biteen JS. Super-Resolution Characterization of Heterogeneous Light-Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Anal Chem 2021; 93:430-444. [PMID: 33100005 DOI: 10.1021/acs.analchem.0c04280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Saemisch L, Liebel M, van Hulst NF. Isolating strong nanoantenna-molecule interactions by ensemble-level single-molecule detection. NANOSCALE 2020; 12:3723-3730. [PMID: 31993603 DOI: 10.1039/c9nr08833d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Traditionally, the nanoscale interaction between single photon emitters and plasmonic nanostructures is studied by relying on deterministic, near-perfect, nanoscale-control, either top-down or bottom-up. However, these approaches are ultra-low throughput thus rendering systematic studies difficult and time-consuming. Here, we show a highly parallelised far-field tactic, combining multiplexed super-resolution fluorescence localization microscopy and data-driven statistical analysis, to study near-field interactions between gold nanorods and single molecules, even at bulk concentrations. We demonstrate that ensemble-level single molecule detection allows separating individual emitters according to their coupling strength with tailored resonant structures, which ultimately permits the reconstruction of super-resolved 2D interaction maps around individual nanoantennas.
Collapse
Affiliation(s)
- Lisa Saemisch
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - Matz Liebel
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - Niek F van Hulst
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain. and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Lee SA, Biteen JS. Spectral Reshaping of Single Dye Molecules Coupled to Single Plasmonic Nanoparticles. J Phys Chem Lett 2019; 10:5764-5769. [PMID: 31508965 DOI: 10.1021/acs.jpclett.9b02480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescent molecules are highly susceptible to their local environment. Thus, a fluorescent molecule near a plasmonic nanoparticle can experience changes in local electric field and local density of states that reshape its intrinsic emission spectrum. By avoiding ensemble averaging while simultaneously measuring the super-resolved position of the fluorophore and its emission spectrum, single-molecule hyperspectral imaging is uniquely suited to differentiate changes in the spectrum from heterogeneous ensemble effects. Thus, we uncover for the first time single-molecule fluorescence emission spectrum reshaping upon near-field coupling to individual gold nanoparticles using hyperspectral super-resolution fluorescence imaging, and we resolve this spectral reshaping as a function of the nanoparticle/dye spectral overlap and separation distance. We find that dyes bluer than the plasmon resonance maximum are red-shifted and redder dyes are blue-shifted. The primary vibronic peak transition probabilities shift to favor secondary vibronic peaks, leading to effective emission maxima shifts in excess of 50 nm, and we understand these light-matter interactions by combining super-resolution hyperspectral imaging and full-field electromagnetic simulations.
Collapse
Affiliation(s)
- Stephen A Lee
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Julie S Biteen
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
9
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Taylor A, Verhoef R, Beuwer M, Wang Y, Zijlstra P. All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:2336-2342. [PMID: 29422979 PMCID: PMC5797984 DOI: 10.1021/acs.jpcc.7b12473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/29/2023]
Abstract
We demonstrate the all-optical reconstruction of gold nanoparticle geometry using super-resolution microscopy. We employ DNA-PAINT to get exquisite control over the (un)binding kinetics by the number of complementary bases and salt concentration, leading to localization accuracies of ∼5 nm. We employ a dye with an emission spectrum strongly blue-shifted from the plasmon resonance to minimize mislocalization due to plasmon-fluorophore coupling. We correlate the all-optical reconstructions with atomic force microscopy images and find that reconstructed dimensions deviate by no more than ∼10%. Numerical modeling shows that this deviation is determined by the number of events per particle, and the signal-to-background ratio in our measurement. We further find good agreement between the reconstructed orientation and aspect ratio of the particles and single-particle scattering spectroscopy. This method may provide an approach to all-optically image the geometry of single particles in confined spaces such as microfluidic circuits and biological cells, where access with electron beams or tip-based probes is prohibited.
Collapse
|
11
|
Weng Y, Li Z, Peng L, Zhang W, Chen G. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing. NANOSCALE 2017; 9:19263-19270. [PMID: 29188850 DOI: 10.1039/c7nr07892g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.
Collapse
Affiliation(s)
- Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China.
| | | | | | | | | |
Collapse
|
12
|
Fu B, Isaacoff BP, Biteen JS. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna. ACS NANO 2017; 11:8978-8987. [PMID: 28806873 DOI: 10.1021/acsnano.7b03420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmonic nanoparticles (NPs) enhance the radiative decay rate of adjacent dyes and can significantly increase fluorescence intensity for improved spectroscopy. However, the NP nanoantenna complicates super-resolution imaging by introducing a mislocalization between the emitter position and its super-resolved emission position. The mislocalization magnitude depends strongly on the dye/NP coupling geometry. It is therefore crucial to quantify mislocalization to recover the actual emitter position in a coupled system. Here, we super-resolve in two and three dimensions the distance-dependent emission mislocalization of single fluorescent molecules coupled to gold NPs with precise distance tuning via double-stranded DNA. We develop an analytical framework to uncover detailed spatial information when direct 3D imaging is not accessible. Overall, we demonstrate that by taking measurements on a single, well-defined, and symmetric dye/NP assembly and by accounting explicitly for artifacts from super-resolution imaging, we can measure the true nanophotonic mislocalization. We measure up to 50 nm mislocalizations and show that smaller separation distances lead to larger mislocalizations, also verified by electromagnetic calculations. Overall, by quantifying the distance-dependent mislocalization shift in this gold NP/dye coupled system, we show that the actual physical position of a coupled single emitter can be recovered.
Collapse
Affiliation(s)
- Bing Fu
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Benjamin P Isaacoff
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Heaps CW, Schatz GC. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. J Chem Phys 2017; 146:224201. [PMID: 29166054 PMCID: PMC5466450 DOI: 10.1063/1.4984120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
Collapse
Affiliation(s)
- Charles W Heaps
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|