1
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
2
|
Li D, Lu J, Zhang X, Jin D, Jin H. Engineering of ZnO/rGO towards NO 2 Gas Detection: Ratio Modulated Sensing Type and Heterojunction Determined Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:917. [PMID: 36903795 PMCID: PMC10004851 DOI: 10.3390/nano13050917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale heterostructured zinc oxide/reduced graphene oxide (ZnO/rGO) materials with p-n heterojunctions exhibit excellent low temperature NO2 gas sensing performance, but their doping ratio modulated sensing properties remain poorly understood. Herein, ZnO nanoparticles were loaded with 0.1~4% rGO by a facile hydrothermal method and evaluated as NO2 gas chemiresistor. We have the following key findings. First, ZnO/rGO manifests doping ratio-dependent sensing type switching. Increasing the rGO concentration changes the type of ZnO/rGO conductivity from n-type (<0.6% rGO) to mixed n/p -type (0.6~1.4% rGO) and finally to p-type (>1.4% rGO). Second, interestingly, different sensing regions exhibit different sensing characteristics. In the n-type NO2 gas sensing region, all the sensors exhibit the maximum gas response at the optimum working temperature. Among them, the sensor that shows the maximum gas response exhibits a minimum optimum working temperature. In the mixed n/p-type region, the material displays abnormal reversal from n- to p-type sensing transitions as a function of the doping ratio, NO2 concentration and working temperature. In the p-type gas sensing region, the response decreases with increasing rGO ratio and working temperature. Third, we derive a conduction path model that shows how the sensing type switches in ZnO/rGO. We also find that p-n heterojunction ratio (np-n/nrGO) plays a key role in the optimal response condition. The model is supported by UV-vis experimental data. The approach presented in this work can be extended to other p-n heterostructures and the insights will benefit the design of more efficient chemiresistive gas sensors.
Collapse
Affiliation(s)
| | | | | | | | - Hongxiao Jin
- Zhejiang Province Key Laboratory of Magnetism, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Li J, Reimers A, Dang KM, Brunk MGK, Drewes J, Hirsch UM, Willems C, Schmelzer CEH, Groth T, Nia AS, Feng X, Adelung R, Sacher WD, Schütt F, Poon JKS. 3D printed neural tissues with in situ optical dopamine sensors. Biosens Bioelectron 2023; 222:114942. [PMID: 36493722 DOI: 10.1016/j.bios.2022.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Armin Reimers
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Jonas Drewes
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ulrike M Hirsch
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada.
| |
Collapse
|
4
|
AlTakroori HHD, Ali A, Greish YE, Qamhieh N, Mahmoud ST. Organic/Inorganic-Based Flexible Membrane for a Room-Temperature Electronic Gas Sensor. NANOMATERIALS 2022; 12:nano12122037. [PMID: 35745376 PMCID: PMC9227867 DOI: 10.3390/nano12122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023]
Abstract
A room temperature (RT) H2S gas sensor based on organic–inorganic nanocomposites has been developed by incorporating zinc oxide (ZnO) nanoparticles (NPs) into a conductivity-controlled organic polymer matrix. A homogeneous solution containing poly (vinyl alcohol) (PVA) and ionic liquid (IL) and further doped with ZnO NPs was used for the fabrication of a flexible membrane (approx. 200 μm in thickness). The sensor was assessed for its performance against hazardous gases at RT (23 °C). The obtained sensor exhibited good sensitivity, with a detection limit of 15 ppm, and a fast time response (24 ± 3 s) toward H2S gas. The sensor also showed excellent repeatability, long-term stability and selectivity toward H2S gas among other test gases. Furthermore, the sensor depicted a high flexibility, low cost, easy fabrication and low power consumption, thus holding great promise for flexible electronic gas sensors.
Collapse
Affiliation(s)
- Husam H. D. AlTakroori
- Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (H.H.D.A.); (A.A.); (N.Q.)
| | - Ashraf Ali
- Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (H.H.D.A.); (A.A.); (N.Q.)
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
- Department of Ceramics, National Research Centre, Cairo 68824, Egypt
| | - Naser Qamhieh
- Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (H.H.D.A.); (A.A.); (N.Q.)
| | - Saleh T. Mahmoud
- Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (H.H.D.A.); (A.A.); (N.Q.)
- Correspondence:
| |
Collapse
|
5
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
6
|
Shi L, Wang H, Ma X, Wang Y, Wang F, Zhao D, Shen D. The Deformation Behavior and Bending Emissions of ZnO Microwire Affected by Deformation-Induced Defects and Thermal Tunneling Effect. SENSORS (BASEL, SWITZERLAND) 2021; 21:5887. [PMID: 34502777 PMCID: PMC8434524 DOI: 10.3390/s21175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
The realization of electrically pumped emitters at micro and nanoscale, especially with flexibility or special shapes is still a goal for prospective fundamental research and application. Herein, zinc oxide (ZnO) microwires were produced to investigate the luminescent properties affected by stress. To exploit the initial stress, room temperature in situ elastic bending stress was applied on the microwires by squeezing between the two approaching electrodes. A novel unrecoverable deformation phenomenon was observed by applying a large enough voltage, resulting in the formation of additional defects at bent regions. The electrical characteristics of the microwire changed with the applied bending deformation due to the introduction of defects by stress. When the injection current exceeded certain values, bright emission was observed at bent regions, ZnO microwires showed illumination at the bent region priority to straight region. The bent emission can be attributed to the effect of thermal tunneling electroluminescence appeared primarily at bent regions. The physical mechanism of the observed thermoluminescence phenomena was analyzed using theoretical simulations. The realization of electrically induced deformation and the related bending emissions in single microwires shows the possibility to fabricate special-shaped light sources and offer a method to develop photoelectronic devices.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Hong Wang
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Xiaohui Ma
- State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, No. 7186 Wei-Xing Road, Changchun 130022, China; (H.W.); (X.M.)
| | - Yunpeng Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Fei Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Dongxu Zhao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| | - Dezhen Shen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033, China; (Y.W.); (F.W.); (D.Z.); (D.S.)
| |
Collapse
|
7
|
Li X, Luo C, Fu Q, Zhou C, Ruelas M, Wang Y, He J, Wang Y, Zhang YS, Zhou J. A Transparent, Wearable Fluorescent Mouthguard for High-Sensitive Visualization and Accurate Localization of Hidden Dental Lesion Sites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000060. [PMID: 32240566 DOI: 10.1002/adma.202000060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Accurate detection and early diagnosis of oral diseases such as dental caries and periodontitis, can be potentially achieved by detecting the secretion of volatile sulfur compounds (VSCs) in oral cavities. Current diagnostic approaches for VSCs can detect the existence and concentrations, yet are not capable of locating the dental lesion sites. Herein, the development of a unique approach for accurately locating dental lesion sites using a fluorescent mouthguard consisting of the zinc oxide-poly(dimethylsiloxane) (ZnO-PDMS) nanocomposite to detect the local release of VSCs is reported. The ZnO-PDMS mouthguard displays a highly sensitive and selective response to VSCs, and exhibits high fluorescent stability, good biocompatibility, and low biological toxicity in normal physiological environments. Then, the wearable ZnO-PDMS mouthguard is demonstrated to be able to identify the precise locations of lesion sites in human subjects. Combined with image analysis, the mouthguards successfully uncover the precise locations of dental caries, allowing convenient screening of hidden dental lesion sites that are oftentimes omitted by dentists. Due to low cost, long-term stability, and good patient compliance, the proposed wearable mouthguard is suitable for large-scale production and enables widely applicable, preliminary yet accurate screening of dental lesions prior to dental clinics and routine physical examinations.
Collapse
Affiliation(s)
- Xuemeng Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chongdai Luo
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Department of Stomatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510275, China
| | - Quanying Fu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cuiping Zhou
- Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Marina Ruelas
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yingshuting Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinxu He
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yangyang Wang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Nikam AV, Prasad BLV, Kulkarni AA. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm 2018. [DOI: 10.1039/c8ce00487k] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal oxide nanoparticles are an important class of nanomaterials that have found several applications in science and technology.
Collapse
Affiliation(s)
- A. V. Nikam
- Chem. Eng. Proc. Dev. Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - B. L. V. Prasad
- Physical and Material Chemistry Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | - A. A. Kulkarni
- Chem. Eng. Proc. Dev. Division
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
9
|
Shree S, Schulz-Senft M, Alsleben NH, Mishra YK, Staubitz A, Adelung R. Light, Force, and Heat: A Multi-Stimuli Composite that Reveals its Violent Past. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38000-38007. [PMID: 28967255 DOI: 10.1021/acsami.7b09598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A self-reporting polythiourethane/tetrapodal-ZnO (PTU/T-ZnO) composite is produced using spiropyran as an additive at a concentration as low as 0.5 wt %. Exposure to heat, UV light and mechanical force caused the spiropyran to undergo reversible isomerization indicated by a reversible color change. The studies have been conducted with a constant spiropyran concentration at 0.5 wt %, meanwhile varying the T-ZnO concentration from 0 to 7.5 wt %. The tetrapodal ZnO served as a prism: the light scattering effect of T-ZnO created a visual impression of uniform color distribution. The interconnected network of the tetrapodal of ZnO embedded in the PTU matrix enhanced the mechanical stability of the polymer leading to high impact resistance up to ∼232 kPa. PTU/spiropyran also emerged as a possible thermal sensing coating, due to its temperature sensitivity. Due to the broad green luminescence band (∼535 nm) in T-ZnO, the colored merocyanine form which absorbs in this region of the spectrum switches back to spiropyran at this wavelength. High concentrations of T-ZnO were shown to reduce the effect one of the switching triggers i.e., ultraviolet light. Using this property of T-ZnO it was possible to achieve a switchable system with the possibility of separating the stimuli.
Collapse
Affiliation(s)
- Sindu Shree
- Institute for Materials Science, Functional Nanomaterials, Kiel University , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Mathias Schulz-Senft
- Otto-Diels-Institute for Organic Chemistry, Kiel University , Otto-Hahn-Platz 4, D-24118 Kiel, Germany
| | - Nils H Alsleben
- Institute for Materials Science, Functional Nanomaterials, Kiel University , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Yogendra Kumar Mishra
- Institute for Materials Science, Functional Nanomaterials, Kiel University , Kaiserstr. 2, D-24143 Kiel, Germany
| | - Anne Staubitz
- Otto-Diels-Institute for Organic Chemistry, Kiel University , Otto-Hahn-Platz 4, D-24118 Kiel, Germany
- Institute for Organic and Analytical Chemistry, University of Bremen , Leobener Str. 7, NW2 C, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1 , Bremen 28359, Germany
| | - Rainer Adelung
- Institute for Materials Science, Functional Nanomaterials, Kiel University , Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
10
|
İncel A, Emirdag-Eanes M, McMillen CD, Demir MM. Integration of Triboluminescent EuD 4TEA Crystals to Transparent Polymers: Impact Sensor Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6488-6496. [PMID: 28125205 DOI: 10.1021/acsami.6b16330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lanthanide-based organometallic materials are well-known candidate triboluminescent (TL) materials that can show bright emission when a mechanical force is applied. These materials are usually in the form of crystalline powders, and it is often useful to integrate these samples into a polymer matrix in order to achieve processability, enabling coating from a solution/molten state or fabrication as a complex-shaped matrix. In this work, micrometer-sized europium tetrakis (dibenzoylmethide) triethylammonium (EuD4TEA) crystals were synthesized and integrated with various transparent polymers (PMMA, PS, PVDF, and PU) using two approaches: (i) blending and (ii) surface impregnation. In the former method, the crystalline particles were molecularly dissolved; therefore, a TL response cannot be achieved. More than 10 wt % TL crystals in the composite is needed to obtain TL signals. However, TL signal was achieved at 2.5 wt % when a composite was prepared by the latter approach. TL intensity shows exponential decay with consecutive mechanical action. The TL emission of PU-based surface impregnated composite expires with long-lived emission, and maximum TL response with respect to applied force was measured between 2.45 and 42.0 N.
Collapse
Affiliation(s)
| | | | - Colin D McMillen
- Department of Chemistry, Clemson University , 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | | |
Collapse
|