1
|
Maufront J, Guichard B, Cao LY, Cicco AD, Jégou A, Romet-Lemonne G, Bertin A. Direct observation of the conformational states of formin mDia1 at actin filament barbed ends and along the filament. Mol Biol Cell 2022; 34:ar2. [PMID: 36383775 PMCID: PMC9816646 DOI: 10.1091/mbc.e22-10-0472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The fine regulation of actin polymerization is essential to control cell motility and architecture and to perform essential cellular functions. Formins are key regulators of actin filament assembly, known to processively elongate filament barbed ends and increase their polymerization rate. Different models have been extrapolated to describe the molecular mechanism governing the processive motion of formin FH2 domains at polymerizing barbed ends. Using negative stain electron microscopy, we directly identified for the first time two conformations of the mDia1 formin FH2 domains in interaction with the barbed ends of actin filaments. These conformations agree with the speculated open and closed conformations of the "stair-stepping" model. We observed the FH2 dimers to be in the open conformation for 79% of the data, interacting with the two terminal actin subunits of the barbed end while they interact with three actin subunits in the closed conformation. In addition, we identified and characterized the structure of single FH2 dimers encircling the core of actin filaments, and reveal their ability to spontaneously depart from barbed ends.
Collapse
Affiliation(s)
- Julien Maufront
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Bérengère Guichard
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Lu-Yan Cao
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Guillaume Romet-Lemonne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| | - Aurélie Bertin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie,75005 Paris, France,*Address correspondence to: Aurélie Bertin (); Guillaume Romet-Lemonne (); Antoine Jégou ()
| |
Collapse
|
2
|
Application of piconewton forces to individual filopodia reveals mechanosensory role of L-type Ca 2+ channels. Biomaterials 2022; 284:121477. [PMID: 35395455 DOI: 10.1016/j.biomaterials.2022.121477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
Abstract
Filopodia are ubiquitous membrane projections that play crucial role in guiding cell migration on rigid substrates and through extracellular matrix by utilizing yet unknown mechanosensing molecular pathways. As recent studies show that Ca2+ channels localized to filopodia play an important role in regulation of their formation and since some Ca2+ channels are known to be mechanosensitive, force-dependent activity of filopodial Ca2+ channels might be linked to filopodia's mechanosensing function. We tested this hypothesis by monitoring changes in the intra-filopodial Ca2+ level in response to application of stretching force to individual filopodia of several cell types using optical tweezers. Results show that stretching forces of tens of pN strongly promote Ca2+ influx into filopodia, causing persistent Ca2+ oscillations that last for minutes even after the force is released. Several known mechanosensitive Ca2+ channels, such as Piezo 1, Piezo 2 and TRPV4, were found to be dispensable for the observed force-dependent Ca2+ influx, while L-type Ca2+ channels appear to be a key player in the discovered phenomenon. As previous studies have shown that intra-filopodial transient Ca2+ signals play an important role in guidance of cell migration, our results suggest that the force-dependent activation of L-type Ca2+ channels may contribute to this process. Overall, our study reveals an intricate interplay between mechanical forces and Ca2+ signaling in filopodia, providing novel mechanistic insights for the force-dependent filopodia functions in guidance of cell migration.
Collapse
|
3
|
Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat Commun 2020; 11:3063. [PMID: 32541780 PMCID: PMC7295813 DOI: 10.1038/s41467-020-16677-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Symmetric or asymmetric positioning of intracellular structures including the nucleus and mitotic spindle steers various biological processes such as cell migration, division, and embryogenesis. In typical animal cells, both a sparse actomyosin meshwork in the cytoplasm and a dense actomyosin cortex underneath the cell membrane participate in the intracellular positioning. However, it remains unclear how these coexisting actomyosin structures regulate the positioning symmetry. To reveal the potential mechanism, we construct an in vitro model composed of cytoplasmic extracts and nucleus-like clusters confined in droplets. Here we find that periodic centripetal actomyosin waves contract from the droplet boundary push clusters to the center in large droplets, while network percolation of bulk actomyosin pulls clusters to the edge in small droplets. An active gel model quantitatively reproduces molecular perturbation experiments, which reveals that the tug-of-war between two distinct actomyosin networks with different maturation time-scales determines the positioning symmetry.
Collapse
|
4
|
Le S, Yu M, Bershadsky A, Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin Cell Dev Biol 2020; 102:73-80. [DOI: 10.1016/j.semcdb.2019.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
|
5
|
Ma L, Hu S, He X, Yang N, Chen L, Yang C, Ye F, Wei T, Li M. Detection of tBid Oligomerization and Membrane Permeabilization by Graphene-Based Single-Molecule Surface-Induced Fluorescence Attenuation. NANO LETTERS 2019; 19:6937-6944. [PMID: 31558028 DOI: 10.1021/acs.nanolett.9b02223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The permeabilization of organelle membranes by BCL-2 family proteins is a pivotal step during the regulation of apoptosis; the underlying mechanisms remain unclear. Based on the fluorescence attenuation by graphene oxide, we developed a single-molecule imaging method termed surface-induced fluorescence attenuation (smSIFA), which enabled us to track both vertical and lateral kinetics of singly labeled BCL-2 family protein tBid during membrane permeabilization. We found that tBid monomers lie shallowly on the lipid bilayer, where they self-assemble to form oligomers. During the initiation phase of self-assembly, the two central hydrophobic helices (α6 and α7) of tBid insert halfway into the phospholipid core, while the other helices remain on the surface. In oligomerized tBid clusters, α6 and α7 prefer to float up, and the other helices may sink to the bottom of the membrane and cause the formation of transient two-dimensional, micelle-like pore structures, which are responsible for the permeabilization of membranes and the induction of apoptosis. Our results shed light on the understanding of tBid-induced apoptosis, and this nanotechnology-based smSIFA approach could be used to dissect the kinetic interaction between membrane protein and lipid bilayer at the single-molecule level with subnanometer precision.
Collapse
Affiliation(s)
- Li Ma
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuxin Hu
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xiaolong He
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Licui Chen
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Chenguang Yang
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fangfu Ye
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Li
- National Laboratory of Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| |
Collapse
|