1
|
Zulueta Diaz YDLM, Arnspang EC. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front Mol Biosci 2024; 11:1455153. [PMID: 39290992 PMCID: PMC11405310 DOI: 10.3389/fmolb.2024.1455153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms. Here we review recent advances and discuss the major advantages and disadvantages of using super-resolution microscopy to investigate protein organization and transport within plasma membranes.
Collapse
Affiliation(s)
| | - Eva C Arnspang
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Zulueta Díaz YDLM, Kure JL, Grosso RA, Andersen C, Pandzic E, Sengupta P, Wiseman PW, Arnspang EC. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of Aquaporin 2 within the membrane of live cells. Biochim Biophys Acta Gen Subj 2023; 1867:130449. [PMID: 37748662 DOI: 10.1016/j.bbagen.2023.130449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
Nanodomains are a biological membrane phenomenon which have a large impact on various cellular processes. They are often analysed by looking at the lateral dynamics of membrane lipids or proteins. The localization of the plasma membrane protein aquaporin-2 in nanodomains has so far been unknown. In this study, we use total internal reflection fluorescence microscopy to image Madin-Darby Canine Kidney (MDCK) cells expressing aquaporin-2 tagged with mEos 3.2. Then, image mean squared displacement (iMSD) approach was used to analyse the diffusion of aquaporin-2, revealing that aquaporin-2 is confined within membrane nanodomains. Using iMSD analysis, we found that the addition of the drug forskolin increases the diffusion of aquaporin-2 within the confined domains, which is in line with previous studies. Finally, we observed an increase in the size of the membrane domains and the extent of trapping of aquaporin-2 after stimulation with forskolin.
Collapse
Affiliation(s)
| | - Jakob Lavrsen Kure
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Rubén Adrián Grosso
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Camilla Andersen
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Elvis Pandzic
- Mark Wainwright Analytical Centre, Lowy Cancer Research Centre C25, University of New South Wales, NSW, 2052, Australia
| | - Prabuddha Sengupta
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Paul W Wiseman
- Department of Chemistry, McGill University, Montreal, Québec, Canada; Department of Physics, McGill University, Montreal, Québec, Canada
| | - Eva C Arnspang
- Department of Green Technology, University of Southern Denmark, 5230 Odense M, Denmark; The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Day CA, Kang M. The Utility of Fluorescence Recovery after Photobleaching (FRAP) to Study the Plasma Membrane. MEMBRANES 2023; 13:membranes13050492. [PMID: 37233553 DOI: 10.3390/membranes13050492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The plasma membrane of mammalian cells is involved in a wide variety of cellular processes, including, but not limited to, endocytosis and exocytosis, adhesion and migration, and signaling. The regulation of these processes requires the plasma membrane to be highly organized and dynamic. Much of the plasma membrane organization exists at temporal and spatial scales that cannot be directly observed with fluorescence microscopy. Therefore, approaches that report on the membrane's physical parameters must often be utilized to infer membrane organization. As discussed here, diffusion measurements are one such approach that has allowed researchers to understand the subresolution organization of the plasma membrane. Fluorescence recovery after photobleaching (or FRAP) is the most widely accessible method for measuring diffusion in a living cell and has proven to be a powerful tool in cell biology research. Here, we discuss the theoretical underpinnings that allow diffusion measurements to be used in elucidating the organization of the plasma membrane. We also discuss the basic FRAP methodology and the mathematical approaches for deriving quantitative measurements from FRAP recovery curves. FRAP is one of many methods used to measure diffusion in live cell membranes; thus, we compare FRAP with two other popular methods: fluorescence correlation microscopy and single-particle tracking. Lastly, we discuss various plasma membrane organization models developed and tested using diffusion measurements.
Collapse
Affiliation(s)
- Charles A Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
| | - Minchul Kang
- Department of Mathematics, Texas A&M-Commerce, Commerce, TX 75428, USA
| |
Collapse
|
4
|
Quan J, Guo Y, Ma J, Long D, Wang J, Zhang L, Sun Y, Dhinakaran MK, Li H. Light-responsive nanochannels based on the supramolecular host–guest system. Front Chem 2022; 10:986908. [PMID: 36212057 PMCID: PMC9532542 DOI: 10.3389/fchem.2022.986908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The light-responsive nanochannel of rhodopsin gained wider research interest from its crucial roles in light-induced biological functions, such as visual signal transduction and energy conversion, though its poor stability and susceptibility to inactivation in vitro have limited its exploration. However, the fabrication of artificial nanochannels with the properties of physical stability, controllable structure, and easy functional modification becomes a biomimetic system to study the stimulus-responsive gating properties. Typically, light-responsive molecules of azobenzene (Azo), retinal, and spiropyran were introduced into nanochannels as photo-switches, which can change the inner surface wettability of nanochannels under the influence of light; this ultimately results in the photoresponsive nature of biomimetic nanochannels. Furthermore, the fine-tuning of their stimulus-responsive properties can be achieved through the introduction of host–guest systems generally combined with a non-covalent bond, and the assembling process is reversible. These host–guest systems have been introduced into the nanochannels to form different functions. Based on the host–guest system of light-responsive reversible interaction, it can not only change the internal surface properties of the nanochannel and control the recognition and transmission behaviors but also realize the controlled release of a specific host or guest molecules in the nanochannel. At present, macrocyclic host molecules have been introduced into nanochannels including pillararenes, cyclodextrin (CD), and metal–organic frameworks (MOFs). They are introduced into the nanochannel through chemical modification or host–guest assemble methods. Based on the changes in the light-responsive structure of azobenzene, spiropyran, retinal, and others with macrocycle host molecules, the surface charge and hydrophilic and hydrophobic properties of the nanochannel were changed to regulate the ionic and molecular transport. In this study, the development of photoresponsive host and guest-assembled nanochannel systems from design to application is reviewed, and the research prospects and problems of this photo-responsive nanochannel membrane are presented.
Collapse
Affiliation(s)
- Jiaxin Quan
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Ying Guo
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine, Shiyan, China
| | - Deqing Long
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Jingjing Wang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Liling Zhang
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
| | - Yong Sun
- School of Chemical and Environmental Engineering, Hanjiang Normal University, Shi Yan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| | - Manivannan Kalavathi Dhinakaran
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
- *Correspondence: Jiaxin Quan, ; Yong Sun, ; Haibing Li,
| |
Collapse
|
5
|
Zieger E, Schwaha T, Burger K, Bergheim I, Wanninger A, Calcino AD. Midbody-Localized Aquaporin Mediates Intercellular Lumen Expansion During Early Cleavage of an Invasive Freshwater Bivalve. Front Cell Dev Biol 2022; 10:894434. [PMID: 35774230 PMCID: PMC9237387 DOI: 10.3389/fcell.2022.894434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Intercellular lumen formation is a crucial aspect of animal development and physiology that involves a complex interplay between the molecular and physical properties of the constituent cells. Embryos of the invasive freshwater mussel Dreissena rostriformis are ideal models for studying this process due to the large intercellular cavities that readily form during blastomere cleavage. Using this system, we show that recruitment of the transmembrane water channel protein aquaporin exclusively to the midbody of intercellular cytokinetic bridges is critical for lumenogenesis. The positioning of aquaporin-positive midbodies thereby influences the direction of cleavage cavity expansion. Notably, disrupting cytokinetic bridge microtubules impairs not only lumenogenesis but also cellular osmoregulation. Our findings reveal a simple mechanism that provides tight spatial and temporal control over the formation of luminal structures and likely plays an important role in water homeostasis during early cleavage stages of a freshwater invertebrate species.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Thomas Schwaha
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Katharina Burger
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ina Bergheim
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| | - Andrew D. Calcino
- Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- *Correspondence: Andreas Wanninger, ; Andrew D. Calcino, ; Elisabeth Zieger,
| |
Collapse
|
6
|
Using kICS to Reveal Changed Membrane Diffusion of AQP-9 Treated with Drugs. MEMBRANES 2021; 11:membranes11080568. [PMID: 34436330 PMCID: PMC8399444 DOI: 10.3390/membranes11080568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.
Collapse
|
7
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
8
|
Revealing Plasma Membrane Nano-Domains with Diffusion Analysis Methods. MEMBRANES 2020; 10:membranes10110314. [PMID: 33138102 PMCID: PMC7693849 DOI: 10.3390/membranes10110314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Nano-domains are sub-light-diffraction-sized heterogeneous areas in the plasma membrane of cells, which are involved in cell signalling and membrane trafficking. Throughout the last thirty years, these nano-domains have been researched extensively and have been the subject of multiple theories and models: the lipid raft theory, the fence model, and the protein oligomerization theory. Strong evidence exists for all of these, and consequently they were combined into a hierarchal model. Measurements of protein and lipid diffusion coefficients and patterns have been instrumental in plasma membrane research and by extension in nano-domain research. This has led to the development of multiple methodologies that can measure diffusion and confinement parameters including single particle tracking, fluorescence correlation spectroscopy, image correlation spectroscopy and fluorescence recovery after photobleaching. Here we review the performance and strengths of these methods in the context of their use in identification and characterization of plasma membrane nano-domains.
Collapse
|
9
|
Teves ME, Roldan ERS, Krapf D, Strauss III JF, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci 2020; 21:E3702. [PMID: 32456358 PMCID: PMC7279445 DOI: 10.3390/ijms21103702] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm differentiation encompasses a complex sequence of morphological changes that takes place in the seminiferous epithelium. In this process, haploid round spermatids undergo substantial structural and functional alterations, resulting in highly polarized sperm. Hallmark changes during the differentiation process include the formation of new organelles, chromatin condensation and nuclear shaping, elimination of residual cytoplasm, and assembly of the sperm flagella. To achieve these transformations, spermatids have unique mechanisms for protein trafficking that operate in a coordinated fashion. Microtubules and filaments of actin are the main tracks used to facilitate the transport mechanisms, assisted by motor and non-motor proteins, for delivery of vesicular and non-vesicular cargos to specific sites. This review integrates recent findings regarding the role of protein trafficking in sperm differentiation. Although a complete characterization of the interactome of proteins involved in these temporal and spatial processes is not yet known, we propose a model based on the current literature as a framework for future investigations.
Collapse
Affiliation(s)
- Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006-Madrid, Spain
| | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Jerome F. Strauss III
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Virali Bhagat
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond VA 23298, USA;
| | - Paulene Sapao
- Department of Chemistry, Virginia Commonwealth University, Richmond VA, 23298, USA;
| |
Collapse
|
10
|
Holst MR, Nejsum LN. A versatile aquaporin-2 cell system for quantitative temporal expression and live cell imaging. Am J Physiol Renal Physiol 2019; 317:F124-F132. [PMID: 31091121 DOI: 10.1152/ajprenal.00150.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aquaporin-2 (AQP2) fine tunes urine concentration in response to the antidiuretic hormone vasopressin. In addition, AQP2 has been suggested to promote cell migration and epithelial morphogenesis. A cell system allowing temporal and quantitative control of expression levels of AQP2 and phospho-mimicking mutants has been missing, as has a system allowing expression of fluorescently tagged AQP2 for time-lapse imaging. In the present study, we generated and validated a Flp-In T-REx Madin-Darby canine kidney cell system for temporal and quantitative control of AQP2 and phospho-mimicking mutants. We verified that expression levels can be temporally and quantitatively controlled and that AQP2 translocated to the plasma membrane in response to elevated cAMP, which also induced S256 phosphorylation. The phospho-mimicking mutants AQP2-S256A and AQP2-S256D localized as previously described, primarily intracellular and to the plasma membrane, respectively. Induction of AQP2 expression in combination with transient, low expression of enhanced green fluorescent protein-tagged AQP2 enabled expression without aggregation and correct translocation in response to elevated cAMP. Interestingly, time-lapse imaging revealed AQP2-containing tubulating endosomes and that tubulation significantly decreased 30 min after cAMP elevation. This was mirrored by the phospho-mimicking mutants AQP2-S256A and AQP2-S256D, where AQP2-S256A-containing endosomes tubulated, whereas AQP2-S256D-containing endosomes did not. Thus, this cell system enables a multitude of cell-based assays warranted to provide deeper insights into the mechanisms of AQP2 regulation and effects on cell migration and epithelial morphogenesis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
11
|
Baldering TN, Dietz MS, Gatterdam K, Karathanasis C, Wieneke R, Tampé R, Heilemann M. Synthetic and genetic dimers as quantification ruler for single-molecule counting with PALM. Mol Biol Cell 2019; 30:1369-1376. [PMID: 30969885 PMCID: PMC6724688 DOI: 10.1091/mbc.e18-10-0661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How membrane proteins oligomerize determines their function. Superresolution microscopy can report on protein clustering and extract quantitative molecular information. Here, we evaluate the blinking kinetics of four photoactivatable fluorescent proteins for quantitative single-molecule microscopy. We identified mEos3.2 and mMaple3 to be suitable for molecular quantification through blinking histogram analysis. We designed synthetic and genetic dimers of mEos3.2 as well as fusion proteins of monomeric and dimeric membrane proteins as reference structures, and we demonstrate their versatile use for quantitative superresolution imaging in vitro and in situ. We further found that the blinking behavior of mEos3.2 and mMaple3 is modified by a reducing agent, offering the possibility to adjust blinking parameters according to experimental needs.
Collapse
Affiliation(s)
- Tim N Baldering
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Marina S Dietz
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Karl Gatterdam
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christos Karathanasis
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ralph Wieneke
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Mike Heilemann
- Single Molecule Biophysics, Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|