1
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
2
|
Abstract
During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based molecular sensors have been witnessed as promising candidates to electrically detect volatile organic compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined crystal orientations. Furthermore, these unique physical/chemical features allow the integrated sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature device size, which promote the fast development of “trillion sensor electronics” for Internet of things (IoT) applications. This review gives a comprehensive overview of the recent studies and achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term stability, and low power consumption, will be highlighted. Finally, we give a prospective account of the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based sensor electronics.
Collapse
|
3
|
Nakamura K, Takahashi T, Hosomi T, Seki T, Kanai M, Zhang G, Nagashima K, Shibata N, Yanagida T. Redox-Inactive CO 2 Determines Atmospheric Stability of Electrical Properties of ZnO Nanowire Devices through a Room-Temperature Surface Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40260-40266. [PMID: 31581773 DOI: 10.1021/acsami.9b13231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Emerging interactive electronics for the Internet of Things era inherently require the long-term stability of semiconductor devices exposed to air. Nanostructured metal oxides are promising options for such atmospherically stable semiconductor devices owing to their inherent stability in air. Among various oxide nanostructures, ZnO nanowires have been the most intensively studied for electrical and optical device applications. Here, we demonstrate a strategy for achieving the atmospheric electrical stability of ZnO nanowire devices. Although the chemically active oxygen and water in air are strong candidates for affecting the electrical stability of nanoscale metal oxides, we found that the ppm-level redox-inactive CO2 in air critically determines the atmospheric electrical stability of hydrothermally grown single-crystalline ZnO nanowires. A series of analyses using atmosphere-controlled electrical characterization of single nanowire devices, Fourier transform infrared spectroscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy consistently revealed that atmospheric CO2 reacts substantially with the ZnO nanowire surfaces, even at room temperature, to form an electrically insulative zinc carbonate thin layer. The formation of this layer essentially limits the atmospheric electrical stability of the ZnO nanowire devices. Based on this surface carbonation mechanism, we propose a strategy to suppress the detrimental surface reaction, which is based on (1) reducing the density of surface hydroxyl groups and (2) improving the nanowire crystallinity by thermal pretreatment. This approach improves the atmospheric electrical stability to at least 40 days in air.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Tsunaki Takahashi
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Takuro Hosomi
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Takehito Seki
- Institute of Engineering Innovation , The University of Tokyo , 2-11-16 Yayoi , Bunkyo , Tokyo 113-8656 , Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Guozhu Zhang
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Kazuki Nagashima
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| | - Naoya Shibata
- Institute of Engineering Innovation , The University of Tokyo , 2-11-16 Yayoi , Bunkyo , Tokyo 113-8656 , Japan
| | - Takeshi Yanagida
- Institute for Materials Chemistry and Engineering , Kyushu University , 6-1 Kasuga-Koen , Kasuga , Fukuoka 816-8580 , Japan
| |
Collapse
|