1
|
Hu M, Li H, Zhu K, Guo L, Zhao M, Zhan H, Devreotes PN, Qing Q. Electric field modulation of ERK dynamics shows dependency on waveform and timing. Sci Rep 2024; 14:3167. [PMID: 38326365 PMCID: PMC10850077 DOI: 10.1038/s41598-024-53018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Different exogenous electric fields (EF) can guide cell migration, disrupt proliferation, and program cell development. Studies have shown that many of these processes were initiated at the cell membrane, but the mechanism has been unclear, especially for conventionally non-excitable cells. In this study, we focus on the electrostatic aspects of EF coupling with the cell membrane by eliminating Faradaic processes using dielectric-coated microelectrodes. Our data unveil a distinctive biphasic response of the ERK signaling pathway of epithelial cells (MCF10A) to alternate current (AC) EF. The ERK signal exhibits both inhibition and activation phases, with the former triggered by a lower threshold of AC EF, featuring a swifter peaking time and briefer refractory periods than the later-occurring activation phase, induced at a higher threshold. Interestingly, the biphasic ERK responses are sensitive to the waveform and timing of EF stimulation pulses, depicting the characteristics of electrostatic and dissipative interactions. Blocker tests and correlated changes of active Ras on the cell membrane with ERK signals indicated that both EGFR and Ras were involved in the rich ERK dynamics induced by EF. We propose that the frequency-dependent dielectric relaxation process could be an important mechanism to couple EF energy to the cell membrane region and modulate membrane protein-initiated signaling pathways, which can be further explored to precisely control cell behavior and fate with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Minxi Hu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Houpu Li
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | - Kan Zhu
- Department of Dermatology, University of California, Davis, CA, 95616, USA
| | - Liang Guo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Science, University of California, Davis, CA, 95616, USA
| | - Huiwang Zhan
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Quan Qing
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA.
- Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Liu Q, Contreras A, Afaq MS, Yang W, Hsu DK, Russell M, Lyeth B, Zanto TP, Zhao M. Intensity-dependent gamma electrical stimulation regulates microglial activation, reduces beta-amyloid load, and facilitates memory in a mouse model of Alzheimer's disease. Cell Biosci 2023; 13:138. [PMID: 37507776 PMCID: PMC10386209 DOI: 10.1186/s13578-023-01085-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Gamma sensory stimulation may reduce AD-specific pathology. Yet, the efficacy of alternating electrical current stimulation in animal models of AD is unknown, and prior research has not addressed intensity-dependent effects. METHODS The intensity-dependent effect of gamma electrical stimulation (GES) with a sinusoidal alternating current at 40 Hz on Aβ clearance and microglia modulation were assessed in 5xFAD mouse hippocampus and cortex, as well as the behavioral performance of the animals with the Morris Water Maze. RESULTS One hour of epidural GES delivered over a month significantly (1) reduced Aβ load in the AD brain, (2) increased microglia cell counts, decreased cell body size, increased length of cellular processes of the Iba1 + cells, and (3) improved behavioral performance (learning & memory). All these effects were most pronounced when a higher stimulation current was applied. CONCLUSION The efficacy of GES on the reduction of AD pathology and the intensity-dependent feature provide guidance for the development of this promising therapeutic approach.
Collapse
Affiliation(s)
- Qian Liu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| | - Adam Contreras
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Muhammad Shan Afaq
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California, Davis, CA, 95616, USA
| | - Daniel K Hsu
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Michael Russell
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Department of Neurological Surgery, University of California, Davis, CA, 95616, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology & Vision Science, Department of Dermatology, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
3
|
Comerci CJ, Gillman AL, Galera-Laporta L, Gutierrez E, Groisman A, Larkin JW, Garcia-Ojalvo J, Süel GM. Localized electrical stimulation triggers cell-type-specific proliferation in biofilms. Cell Syst 2022; 13:488-498.e4. [PMID: 35512710 PMCID: PMC9233089 DOI: 10.1016/j.cels.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/20/2021] [Accepted: 04/11/2022] [Indexed: 01/18/2023]
Abstract
Biological systems ranging from bacteria to mammals utilize electrochemical signaling. Although artificial electrochemical signals have been utilized to characterize neural tissue responses, the effects of such stimuli on non-neural systems remain unclear. To pursue this question, we developed an experimental platform that combines a microfluidic chip with a multielectrode array (MiCMA) to enable localized electrochemical stimulation of bacterial biofilms. The device also allows for the simultaneous measurement of the physiological response within the biofilm with single-cell resolution. We find that the stimulation of an electrode locally changes the ratio of the two major cell types comprising Bacillus subtilis biofilms, namely motile and extracellular-matrix-producing cells. Specifically, stimulation promotes the proliferation of motile cells but not matrix cells, even though these two cell types are genetically identical and reside in the same microenvironment. Our work thus reveals that an electronic interface can selectively target bacterial cell types, enabling the control of biofilm composition and development.
Collapse
Affiliation(s)
- Colin J Comerci
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alan L Gillman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leticia Galera-Laporta
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Edgar Gutierrez
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph W Larkin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Gürol M Süel
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; San Diego Center for Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Guo L, Zhu K, Pargett M, Contreras A, Tsai P, Qing Q, Losert W, Albeck J, Zhao M. Electrically synchronizing and modulating the dynamics of ERK activation to regulate cell fate. iScience 2021; 24:103240. [PMID: 34746704 PMCID: PMC8554532 DOI: 10.1016/j.isci.2021.103240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
Intracellular signaling dynamics play fundamental roles in cell biology. Precise modulation of the amplitude, duration, and frequency of signaling activation will be a powerful approach to investigate molecular mechanisms as well as to engineer signaling to control cell behaviors. Here, we showed a practical approach to achieve precise amplitude modulation (AM), frequency modulation (FM), and duration modulation (DM) of MAP kinase activation. Alternating current (AC) electrical stimulation induced synchronized ERK activation. Amplitude and duration of ERK activation were controlled by varying stimulation strength and duration. ERK activation frequencies were arbitrarily modulated with trains of short AC applications with accurately defined intervals. Significantly, ERK dynamics coded by well-designed AC can rewire PC12 cell fate independent of growth factors. This technique can be used to synchronize and modulate ERK activation dynamics, thus would offer a practical way to control cell behaviors in vivo without the use of biochemical agents or genetic manipulation. Alternating-current (AC) electric field activates ERK independently of growth factors AC stimulation length modulates the amplitude and duration of ERK activation On-off time interval of AC modulates the frequency of ERK activation peaks Electrical modulation of ERK dynamics promotes neuronal differentiation of PC12 cells
Collapse
Affiliation(s)
- Liang Guo
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA.,College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Kan Zhu
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Adam Contreras
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Patrick Tsai
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| | - Quan Qing
- Department of Physics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Wolfgang Losert
- Department of Physics, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Min Zhao
- Department of Ophthalmology & Vision Science, Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Zhao S, Mehta AS, Zhao M. Biomedical applications of electrical stimulation. Cell Mol Life Sci 2020; 77:2681-2699. [PMID: 31974658 PMCID: PMC7954539 DOI: 10.1007/s00018-019-03446-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
This review provides a comprehensive overview on the biomedical applications of electrical stimulation (EStim). EStim has a wide range of direct effects on both biomolecules and cells. These effects have been exploited to facilitate proliferation and functional development of engineered tissue constructs for regenerative medicine applications. They have also been tested or used in clinics for pain mitigation, muscle rehabilitation, the treatment of motor/consciousness disorders, wound healing, and drug delivery. However, the research on fundamental mechanism of cellular response to EStim has fell behind its applications, which has hindered the full exploitation of the clinical potential of EStim. Moreover, despite the positive outcome from the in vitro and animal studies testing the efficacy of EStim, existing clinical trials failed to establish strong, conclusive supports for the therapeutic efficacy of EStim for most of the clinical applications mentioned above. Two potential directions of future research to improve the clinical utility of EStim are presented, including the optimization and standardization of the stimulation protocol and the development of more tissue-matching devices.
Collapse
Affiliation(s)
- Siwei Zhao
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Surgery, University of Nebraska Medical Center, Nebraska Medical Center 985965, Omaha, NE, 68198, USA.
| | - Abijeet Singh Mehta
- Department of Dermatology, University of California, Davis, CA, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, USA
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA
| |
Collapse
|