1
|
Jia Y, Wu W, Chen R, Wang H, Zhang C, Chen L, Yao J. Magneto-electrochemical method for chiral recognition of amino acid enantiomers. Analyst 2024; 149:3732-3738. [PMID: 38842499 DOI: 10.1039/d4an00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Chiral recognition of enantiomers with identical mirror-symmetric molecular structures is important for the analysis of biomolecules, and it conventionally relies on stereoselective interactions in chiral chemical environments. Here, we develop a magneto-electrochemical method for the enhanced detection of chiral amino acids (AAs), that combines the advantages of the high sensitivity of electrochemiluminescent (ECL) biosensors and chirality-induced effects under a magnetic field. The ECL difference between L- and D-enantiomers can be amplified over 35-fold under a field of 3.5 kG, and the chiral discrimination can be achieved in dilute AA solutions down to the nM level. The field-dependent ECL and chronocoulometry measurements suggest that chiral AAs can lock the spins on their radicals and thus enlarge the ECL change under applied magnetic fields (magneto-ECL, MECL), which explains the field-enhanced chiral discrimination of AA enantiomers. Finally, a detailed protocol is demonstrated for the identification of unknown AA solutions, in which the species, chirality and concentration of AAs can be determined simultaneously from the 2D plots of the ECL and MECL results. This work benefits the development of field-assisted detection methods and represents a promising and universal strategy for the comprehensive analysis of chiral biomolecules.
Collapse
Affiliation(s)
- Yueqian Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lili Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
Hu R, Lu X, Hao X, Qin W. An Organic Chiroptical Detector Favoring Circularly Polarized Light Detection from Near-Infrared to Ultraviolet and Magnetic-Field-Amplifying Dissymmetry in Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211935. [PMID: 36916071 DOI: 10.1002/adma.202211935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Circularly polarized light detection has attracted growing attention because of its unique application in security surveillance and quantum optics. Here, through designing a chiral polymer as a donor, a high-performance circularly polarized light detector is fabricated, successfully enabling detection from ultraviolet (300 nm) to near-infrared (1100 nm). The chiroptical detector presents an excellent ability to distinguish right-handed and left-handed circularly polarized light, where dissymmetries in detectivity, responsivity, and electric current are obtained and then optimized. The dissymmetry in electric current can be increased from 0.18 to 0.23 once an external magnetic field is applied. This is a very rare report on the dissymmetry tunability by an external field in chiroptical detectors. Moreover, the chirality-generated orbital angular momentum is one of the key factors determining the performance of the circularly polarized light detection. Overall, the organic chiroptical detector presents excellent stability in detection, which provides great potential for future flexible and compact integrated platforms.
Collapse
Affiliation(s)
- Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
3
|
Wang G, Hao C, Chen C, Kuang H, Xu C, Xu L. Six-Pointed Star Chiral Cobalt Superstructures with Strong Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204219. [PMID: 36038354 DOI: 10.1002/smll.202204219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Chiral inorganic nanomaterials have shown promise as a potential means of combating bacteria due to their high levels of biocompatibility, easy surface modification, and excellent optical properties. In this study, a diverse range of chiral hierarchical nanomaterials are prepared from Co2+ and L/D-Tartaric acid (Tar) ligands. By combining the ligands in different ratios, chiral Co superstructures (Co SS) are obtained with different morphologies, including chiral nanoflowers, chiral nanohanamaki, a chiral six-pointed star, a chiral fan shape, and a chiral fusiform shape. It is found that the chiral six-pointed star structures exhibit chiroptical activity across a broad range of wavelengths from 300 to 1300 nm and that the g-factor is as high as 0.033 with superparamagnetic properties. Under the action of electromagnetic fields, the chiral six-pointed star Co SS shows excellent killing ability against Gram-positive Staphylococcus aureus (ATCC 25923). Compared to L-Co SS, D-Co SS shows stronger levels of antibacterial ability. It is found that the levels of reactive oxygen species generated by D-Co SS are 1.59-fold higher than L-Co SS which is attributed to chiral-induced spin selectivity effects. These findings are of significance for the further development of chiral materials with antibacterial properties.
Collapse
Affiliation(s)
- Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
4
|
Wei M, Lu X, Qiao J, Ren S, Hao XT, Qin W. Response of Spin to Chiral Orbit and Phonon in Organic Chiral Ferrimagnetic Crystals. ACS NANO 2022; 16:13049-13056. [PMID: 35943139 DOI: 10.1021/acsnano.2c05601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achiral organic materials show nearly negligible orbit angular momentum, whereas organic ferrimagnets with chirality and reduced electron-lattice scattering could fundamentally bridge the gap between ferromagnetism and antiferromagnetism in the rapidly emerging field of ferrimagnetic spintronics. In this work, we report enantiomeric organic chiral ferrimagnets, where the chirality results from the molecular torsion by propeller-like arrangement of the donor and acceptor molecules. The ferrimagnetism results from the difference in electron-phonon coupling of the donor and acceptor inside the chiral crystals. Because the spin polarization is significantly dependent on the chirality, the magnetization of right-handed organic chiral ferrimagnetic crystals is larger than that of left-handed ones by 300% at 10 K. In addition, the processes of both excitation and recombination are strongly related to spin, phonon, and chiral orbit in these chiral ferrimagnets. Overall, both the organic chiral ferrimagnetism and spin chiroptical activities may substantially enrich the field of organic spintronics.
Collapse
Affiliation(s)
- Mengmeng Wei
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of NewYork, Buffalo, New York 14260, United States
- Department of Chemistry and Research and Education in Energy Environment and Water Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010 Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Ye X, Li B, Wang Z, Li J, Zhang J, Wan X. Tuning organic crystal chirality by the molar masses of tailored polymeric additives. Nat Commun 2021; 12:6841. [PMID: 34824273 PMCID: PMC8617073 DOI: 10.1038/s41467-021-27236-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Hierarchically ordered chiral crystals have attracted intense research efforts for their huge potential in optical devices, asymmetric catalysis and pharmaceutical crystal engineering. Major barriers to the application have been the use of costly enantiomerically pure building blocks and the difficulty in precise control of chirality transfer from molecular to macroscopic level. Herein, we describe a strategy that offers not only the preferred formation of one enantiomorph from racemic solution but also the subsequent enantiomer-specific oriented attachment of this enantiomorph by balancing stereoselective and non-stereoselective interactions. It is demonstrated by on-demand switching the sign of fan-shaped crystal aggregates and the configuration of their components only by changing the molar mass of tailored polymeric additives. Owing to the simplicity and wide scope of application, this methodology opens an immediate opportunity for facile and efficient fabrication of one-handed macroscopic aggregates of homochiral organic crystals from racemic starting materials.
Collapse
Affiliation(s)
- Xichong Ye
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Bowen Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Zhaoxu Wang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jing Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jie Zhang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|