1
|
Shavalier SA, Gezelter JD. Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations. J Chem Inf Model 2025; 65:811-824. [PMID: 39804767 DOI: 10.1021/acs.jcim.4c02195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres (r = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential. We find that conductance is higher in MTAB-capped interfaces, due in large part to the metal-to-ligand coupling provided by the Au-S bond. Alternatively, CTAB does not couple strongly with either the metal or the solvent, and it is largely a barrier to heat transfer, resulting in a much lower interfacial thermal conductance. Through analysis of physical contact between the ligand and the solvent, we find that there is significantly more overlap in the MTAB systems than the CTAB systems, mirroring the trends we observed in the conductance.
Collapse
Affiliation(s)
- Sydney A Shavalier
- 251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J Daniel Gezelter
- 251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Liu H, Liu Z, Xiao J, Liu X, Jiang H, Wang X. Photo-induced Oriented Crystallization of Intracellular Nanocrystals Based on Phase Separation for Diagnostic Bioimaging and Analysis. Adv Healthc Mater 2024; 13:e2303248. [PMID: 38272459 DOI: 10.1002/adhm.202303248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Biomineral crystals form complex nonequilibrium structures based on the multistep nucleation theory, via transient amorphous precursors. However, the intricate nature of the biological system results in the inconsistent frequency of nucleation and crystallization, which making it problematic to obtain homogeneous nanocrystals, limits their application in biomedicine. Here, it is reported that homogeneous nanocrystals of photoinduced oriented crystallization with protein coronas are based on intracellular liquid-liquid phase separation for in situ analysis and mapping of surface-enhanced Raman spectroscopy (SERS). Near-infrared light promotes the formation of intracellular dense phases, accelerates the nucleation of gold atoms at secondary structure sites of proteins, and promotes the growth of crystals. Homogeneous gold nanocrystals with stable SERS signals can be used to analysis different cell cycles and acquire in situ molecular information of metastatic tumor cells. Of note are tag molecule is embedded in protein coronas of gold nanocrystals to enable the mapping of patient tumor tissue samples and the portable recognition of tumor cells. Thus, this study proposes a new strategy for biomineralization of intracellular homogeneous gold nanocrystals and its potential application.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Jiang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
4
|
Ma J, Yang M, Zhang B, Niu M. The roles of templates consisting of amino acids in the synthesis and application of gold nanoclusters. NANOSCALE 2024; 16:7287-7306. [PMID: 38529817 DOI: 10.1039/d3nr06042j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Gold nanoclusters (AuNCs) with low toxicity, high photostability, and facile synthesis have attracted great attention. The ligand is of great significance in stabilizing AuNCs and regulating their properties. Ligands consisting of amino acids (proteins and peptides) are an ideal template for synthesizing applicative AuNCs due to their inherent bioactivity, biocompatibility, and accessibility. In this review, we summarize the correlation of the template consisting of amino acids with the properties of AuNCs by analyzing different peptide sequences. The selection of amino acids can regulate the fluorescence excitation/emission and intensity, size, cell uptake, and light absorption. By analyzing the role played by AuNCs stabilized by proteins and peptides in the application, universal rules and detailed performances of sensors, antibacterial agents, therapeutic reagents, and light absorbers are reviewed. This review can guide the template design and application of AuNCs when selecting proteins and peptides as ligands.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mengmeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Bin Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
5
|
Liu N, Lin Q, Huang Z, Liu C, Qin J, Yu Y, Chen W, Zhang J, Jiang M, Gao X, Huo S, Zhu X. Mitochondria-Targeted Prodrug Nanoassemblies for Efficient Ferroptosis-Based Therapy via Devastating Ferroptosis Defense Systems. ACS NANO 2024; 18:7945-7958. [PMID: 38452275 DOI: 10.1021/acsnano.3c10133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ferroptosis is a form of regulated cell death accompanied by lipid reactive oxygen species (ROS) accumulation in an iron-dependent manner. However, the efficiency of tumorous ferroptosis was seriously restricted by intracellular ferroptosis defense systems, the glutathione peroxidase 4 (GPX4) system, and the ubiquinol (CoQH2) system. Inspired by the crucial role of mitochondria in the ferroptosis process, we reported a prodrug nanoassembly capable of unleashing potent mitochondrial lipid peroxidation and ferroptotic cell death. Dihydroorotate dehydrogenase (DHODH) inhibitor (QA) was combined with triphenylphosphonium moiety through a disulfide-containing linker to engineer well-defined nanoassemblies (QSSP) within a single-molecular framework. After being trapped in cancer cells, the acidic condition provoked the structural disassembly of QSSP to liberate free prodrug molecules. The mitochondrial membrane-potential-driven accumulation of the lipophilic cation prodrug was delivered explicitly into the mitochondria. Afterward, the thiol-disulfide exchange would occur accompanied by downregulation of reduced glutathione levels, thus resulting in mitochondria-localized GPX4 inactivation for ferroptosis. Simultaneously, the released QA from the hydrolysis reaction of the adjacent ester bond could further devastate mitochondrial defense and evoke robust ferroptosis via the DHODH-CoQH2 system. This subcellular targeted nanoassembly provides a reference for designing ferroptosis-based strategy for efficient cancer therapy through interfering antiferroptosis systems.
Collapse
Affiliation(s)
- Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jingbo Qin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yanlin Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingbo Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Min Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xuemin Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
6
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
8
|
Shavalier SA, Gezelter JD. Heat Transfer in Gold Interfaces Capped with Thiolated Polyethylene Glycol: A Molecular Dynamics Study. J Phys Chem B 2023; 127:10215-10225. [PMID: 37978942 DOI: 10.1021/acs.jpcb.3c05238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Reverse nonequilibrium molecular dynamics simulations were used to study heat transport in solvated gold interfaces which have been functionalized with a low-molecular weight thiolated polyethylene glycol (PEG). The gold interfaces studied included (111), (110), and (100) facets as well as spherical nanoparticles with radii of 10 and 20 Å. The embedded atom model (EAM) and the polarizable density-readjusted embedded atom model (DR-EAM) were implemented to determine the effect of metal polarizability on heat transport properties. We find that the interfacial thermal conductance values for thiolated PEG-capped interfaces are higher than those for pristine gold interfaces. Hydrogen bonding between the thiolated PEG and solvent differs between planar facets and the nanospheres, suggesting one mechanism for enhanced transfer of energy, while the covalent gold sulfur bond appears to create the largest barrier to thermal conduction. Through analysis of vibrational power spectra, we find an enhanced population at low-frequency heat-carrying modes for the nanospheres, which may also explain the higher mean interfacial thermal conductance (G) value.
Collapse
Affiliation(s)
- Sydney A Shavalier
- Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J Daniel Gezelter
- Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. J Am Chem Soc 2023. [PMID: 37200506 DOI: 10.1021/jacs.3c02880] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultrasmall coinage metal nanoclusters (NCs, <3 nm) have emerged as a novel class of theranostic probes due to their atomically precise size and engineered physicochemical properties. The rapid advances in the design and applications of metal NC-based theranostic probes are made possible by the atomic-level engineering of metal NCs. This Perspective article examines (i) how the functions of metal NCs are engineered for theranostic applications, (ii) how a metal NC-based theranostic probe is designed and how its physicochemical properties affect the theranostic performance, and (iii) how metal NCs are used to diagnose and treat various diseases. We first summarize the tailored properties of metal NCs for theranostic applications in terms of biocompatibility and tumor targeting. We focus our discussion on the theranostic applications of metal NCs in bioimaging-directed disease diagnosis, photoinduced disease therapy, nanomedicine, drug delivery, and optical urinalysis. Lastly, an outlook on the challenges and opportunities in the future development of metal NCs for theranostic applications is provided.
Collapse
Affiliation(s)
- Ge Yang
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, P. R. China
| | - Fanglin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fuyi Jiang
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
11
|
Wang W, Liu J, Kong L, Wang L, Niu D, Wang J, Leung CH. Synthesis and luminescence monitoring of iridium(III) complex-functionalized gold nanoparticles and their application for determination of gold(III) ions. Mikrochim Acta 2023; 190:171. [PMID: 37016086 DOI: 10.1007/s00604-023-05762-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
A new method is presented for the one-step synthesis and real-time monitoring of iridium(III) complex-functionalized AuNPs from the precursor gold(III) chloride (AuCl3). The functionalized AuNPs with an average size of 8 - 20 nm were obtained by the reduction of Au3+ ions by the alkyne group of iridium(III) complexes, which was accompanied by the anchoring iridium(III) complexes on the surface of the nanoparticles. Meanwhile, the luminescence of the iridium(III) complexes was effectively quenched due to distance-dependent fluorescence quenching by AuNPs, thereby enabling luminescence monitoring of the formation process of the functionalized AuNPs and obtaining scattering information and spectral information in real time. Moreover, this method was applied to the determination of Au3+ ions in buffer with a limit of detection of 0.38 μM at 700 nm in luminescence mode, while the detection limit for absorbance was 10.04 μM. Importantly, the multimodal detection strategy alleviates interference from other metal ions. Furthermore, the iridium(III) alkyne complexes were capable of imaging mitochondrial Au3+ ions in living cells. Taken together, this work opens a new avenue for convenient synthesis and monitoring formation of functionalized AuNPs, and also provides a tool for selective determination of Au3+ ions in solution and in cellulo.
Collapse
Affiliation(s)
- Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Jianhua Liu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000, People's Republic of China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Dou Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen, 518057, China.
| | - Chung-Hang Leung
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing, 400000, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
12
|
Mordini D, Mavridi-Printezi A, Menichetti A, Cantelli A, Li X, Montalti M. Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040648. [PMID: 36839016 PMCID: PMC9960743 DOI: 10.3390/nano13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/31/2023]
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure.
Collapse
|
13
|
Photoluminescence of the Au 38(SR) 26 nanocluster comprises three radiative processes. Commun Chem 2023; 6:22. [PMID: 36732442 PMCID: PMC9894927 DOI: 10.1038/s42004-023-00819-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Photoluminescence of ultrasmall, atomically precise gold nanoclusters constitutes an area of significant interest in recent years for both fundamental research and biological applications. However, the exploration of near-infrared photoluminescence of gold nanoclusters is still in its infancy due to the limitations of synthetic methods and characterization techniques. Herein, the photoluminescence properties of an Au38(PET)26 (PET = 2-phenylethanethiolate) nanocluster are investigated in detail. The Au38(PET)26 exhibits an emission peak at 865 nm, which is revealed to be a mix of fluorescence, thermally activated delayed fluorescence, and phosphorescence via the combined analyses of time-resolved and temperature-dependent photoluminescence measurements. The quantum yield of Au38(PET)26 is determined to be 1.8% at room temperature under ambient conditions, which increases to above 90% by suppressing the non-radiative relaxation pathway at a cryogenic temperature (80 K). Overall, the results of this work discover the coexistence of three radiative processes in thiolate-protected Au nanoclusters and will pave the way for understanding the intriguing photoluminescence properties of gold nanoclusters in future studies.
Collapse
|
14
|
Mandhata CP, Sahoo CR, Padhy RN. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biol Trace Elem Res 2022; 200:5307-5327. [PMID: 35083708 DOI: 10.1007/s12011-021-03078-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Recently there had been a great interest in biologically synthesized nanoparticles (NPs) as potential therapeutic agents. The shortcomings of conventional non-biological synthesis methods such as generation of toxic byproducts, energy consumptions, and involved cost have shifted the attention towards green syntheses of NPs. Among noble metal NPs, gold nanoparticles (AuNPs) are the most extensively used ones, owing to the unique physicochemical properties. AuNPs have potential therapeutic applications, as those are synthesized with biomolecules as reducing and stabilizing agent(s). The green method of AuNP synthesis is simple, eco-friendly, non-toxic, and cost-effective with the use of renewable energy sources. Among all taxa, cyanobacteria have attracted considerable attention as nano-biofactories, due to cellular uptake of heavy metals from the environment. The cellular bioactive pigments, enzymes, and polysaccharides acted as reducing and coating agents during the process of biosynthesis. However, cyanobacteria-mediated AuNPs have potential biomedical applications, namely, targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
15
|
Luo L, Liu Z, Du X, Jin R. Near-Infrared Dual Emission from the Au 42(SR) 32 Nanocluster and Tailoring of Intersystem Crossing. J Am Chem Soc 2022; 144:19243-19247. [PMID: 36239690 DOI: 10.1021/jacs.2c09107] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work presents the synthesis and intriguing photoluminescence of the Au42(PET)32 (PET = 2-phenylethanethiolate) nanocluster (NC). The Au42(PET)32 NC exhibits dual emission at 875 and 1040 nm, which are revealed to be fluorescence and phosphorescence, respectively. The emission quantum yield (QY) of Au42(PET)32 in dichloromethane is 11.9% at room temperature in air, which is quite rare for thiolate-protected Au NCs. When Au42(PET)32 NCs are embedded in polystyrene films (solid state), the fluorescence was dramatically suppressed while the phosphorescence was significantly enhanced. This divergent behavior is explained by dipolar interaction-induced enhancement of intersystem crossing from singlet to triplet excited state.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| |
Collapse
|
16
|
Li G, Lu M, Li S, Yang M, Zhang Y, Zhang Y, Wang H, Yang W. A novel fluorescent "OFF-ON" sensing strategy for Hg (II) in water based on functionalized gold nanoparticles. CHEMOSPHERE 2022; 303:135174. [PMID: 35649443 DOI: 10.1016/j.chemosphere.2022.135174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Mercury ion (Hg2+) is a heavy metal pollutant that can affect the safety of water environment and endanger human health. A novel detection strategy (GNPs-L-Cys-Rh6G2) for Hg2+ based on a fluorescence "OFF-ON" was proposed. Gold nanoparticles (GNPs) were assembled with l-cysteine (L-Cys), which was used as a "bridge" to link with rhodamine 6G derivatives (Rh6G2). The fluorescence state transition of GNPs-L-Cys-Rh6G2 switching from "OFF"-"ON" was observed because Hg2+ opened the spirolactam ring through a catalytic hydrolysis mechanism. The fluorescence signal of the GNPs-L-Cys-Rh6G2 system mixed with Hg2+ in the concentration range of 10-100 μM was analyzed and determined with a limit of detection (LOD) of 2 μM (S/N = 3). Moreover, the spiked Hg2+ concentration in real water samples were successfully quantified by GNPs-L-Cys-Rh6G2, which was in line with the ideal average recovery rate and relative standard deviation. The proposed strategy exhibited high specificity, sensitivity and stability, providing a novel sensing platform for heavy metal ions detection in water environment.
Collapse
Affiliation(s)
- Gufeng Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Mingrong Lu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shaoqing Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yuanling Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Yanli Zhang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
17
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
18
|
Liu Y, Cao Y, Zhang C, Ye C, Bian Q, Cheng X, Xia H, Zheng J, Liu H. A novel colorimetric method for H2O2 sensing and its application: Fe2+-catalyzed H2O2 prevents aggregation of AuNPs by oxidizing cysteine (FeHOAuC). Anal Chim Acta 2022; 1207:339840. [DOI: 10.1016/j.aca.2022.339840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
|
19
|
Mi W, Tang S, Guo S, Li H, Shao N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Wang L, Li S, Zhong L, Li Q, Liu S, Zheng W, Jiang X. Evaluation of the in vivo behavior of antibacterial gold nanoparticles for potential biomedical applications. J Mater Chem B 2021; 9:3025-3031. [PMID: 33885664 DOI: 10.1039/d1tb00128k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetics is a critical factor determining the clinical applicability of nanomaterials. Systematic study of the pharmacokinetics of functional nanomaterials is thus significant for promoting their applications. Herein, we take aminophenylboronic acid and mercaptophenylboronic acid-co-modified gold nanoparticles (A/M-Au NPs) with potent and tunable antibacterial activity as an example to study their behaviors in vitro and in vivo. The maximum concentration (Cmax, 2 mg L-1), the time to reach the maximum concentration (Tmax, 6 h), and the half-life (T1/2, 12 h) in the plasma of mice reflect appropriate pharmacokinetics of the gold nanoparticles as an ideal nano-antibiotic. Strikingly, the A/M-Au NPs show an extremely high median lethal dose (920 mg kg-1), which is about 100 times their effective dose (7.2 mg kg-1), suggesting their outstanding biosafety. The adequate pharmacokinetic profile and the high biosafety of the gold nanoparticles pave the way for their potential biomedical applications.
Collapse
Affiliation(s)
- Le Wang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin 150001, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zheng W, Jia Y, Zhao Y, Zhang J, Xie Y, Wang L, Zhao X, Liu X, Tang R, Chen W, Jiang X. Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. NANO LETTERS 2021; 21:1992-2000. [PMID: 33616397 DOI: 10.1021/acs.nanolett.0c04451] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One major frustration in developing antibiotics is that bacteria can quickly develop resistance that would require an entirely new cycle of research and clinical testing to overcome. Although plenty of bactericidal nanomaterials have been developed against increasingly severe superbugs, few reports have studied the resistance to these nanomaterials. Herein, we show that antibacterial 4,6-diamino-2-pyrimidine thiol (DAPT)-capped gold nanoparticles (AuDAPTs) can induce a 16-fold increased minimum inhibitory concentration (MIC) of E. coli only after very long term exposure (183 days), without developing cross-resistance to commercialized antibiotics. Strikingly, we recovered the bactericidal activities of AuDAPTs to the resistant strain by tuning the sizes of AuDAPTs without employing new chemicals. Such slow, easy-to-handle resistance induced by AuDAPTs is unprecedented compared to traditional antibiotics or other nanomaterials. In addition to the novel antibacterial activities and biocompatibilities, our approach will accelerate the development of gold nanomaterial-based therapeutics against multi-drug-resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- Wenshu Zheng
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuexiao Jia
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuyun Zhao
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yangzhouyun Xie
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Le Wang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaohui Zhao
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Rongbing Tang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
22
|
|
23
|
Improved photothermal therapy of brain cancer cells and photogeneration of reactive oxygen species by biotin conjugated gold photoactive nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112102. [PMID: 33388605 DOI: 10.1016/j.jphotobiol.2020.112102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/15/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Herein, we report on the design and development of functionalized acrylic polymeric nanoparticles with Spiropyrans (SPs) and imidazole moieties via superficial polymerizations. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles(Au-NPs). The synthesized Au-NPs were surface adapted with biotin as specific targeting tumor penetration cells and enhance the intercellular uptake through the endocytosis. FT-IR (Fourier-transform Infrared Spectroscopy), UV-Vis (Ultra Violet-Visible Spectrophotometer), EDS (Energy Dispersive X-Ray Spectroscopy), SEM (Scanning Electron Microscope) and HR-TEM (High-resolution transmission electron microscopy) descriptions were engaged to illustrate their spectral analysis and morphological examinations of Bt@Au-NPs. Fluorescence microscopy images of cellular uptake descriptions and ICP-MS (Inductively coupled plasma mass spectrometry) investigation established the cell lines labeling ability and enhanced targetting efficacy of biotin-conjugated Au-NPs (Bt@Au-NPs) toward C6 glioma cells (brain cancer cells) with 72.5% cellular uptake relative to 30.2% for non-conjugated lone. These were further established through intracellular ROS examinations and in vitro cytotoxicity investigation on the C6 glioma cell line. The solid surface plasmon absorptions of the Au-NPs and Bt@Au-NPs providing raised photothermal therapy under UV irradiation. The synthesized multifunctional Bt@Au-NPs with an inclusive combination of potential resources presented encouraging nanoprobe with targeting capability, improved photodynamic and photothermal cancer therapy.
Collapse
|
24
|
Yao Q, Wu Z, Liu Z, Lin Y, Yuan X, Xie J. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem Sci 2020; 12:99-127. [PMID: 34163584 PMCID: PMC8178751 DOI: 10.1039/d0sc04620e] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.
Collapse
Affiliation(s)
- Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao China 266042
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| |
Collapse
|
25
|
Growth regulation of luminescent gold nanoparticles directed from amphiphilic block copolymers: highly-controlled nanoassemblies toward tailored in-vivo transport. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9862-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Nonappa. Luminescent gold nanoclusters for bioimaging applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:533-546. [PMID: 32280577 PMCID: PMC7136552 DOI: 10.3762/bjnano.11.42] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 05/27/2023]
Abstract
Luminescent nanomaterials have emerged as attractive candidates for sensing, catalysis and bioimaging applications in recent years. For practical use in bioimaging, nanomaterials with high photoluminescence, quantum yield, photostability and large Stokes shifts are needed. While offering high photoluminescence and quantum yield, semiconductor quantum dots suffer from toxicity and are susceptible to oxidation. In this context, atomically precise gold nanoclusters protected by thiol monolayers have emerged as a new class of luminescent nanomaterials. Low toxicity, bioavailability, photostability as well as tunable size, composition, and optoelectronic properties make them suitable for bioimaging and biosensing applications. In this review, an overview of the sensing of pathogens, and of in vitro and in vivo bioimaging using luminescent gold nanoclusters along with the limitations with selected examples are discussed.
Collapse
Affiliation(s)
- Nonappa
- Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, FI-02150, Espoo, Finland
- Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Kemistintie 1, FI-02150, Espoo, Finland
| |
Collapse
|