1
|
Mo X, Li H, Tang P, Hao Y, Dong B, Marazuela MD, Gomez-Gomez MM, Zhu X, Li Q, Maroto BL, Jiang S, Fan C, Lan X. DNA-Modulated and Mechanoresponsive Excitonic Couplings Reveal Chiroptical Correlation of Conformation, Tension, and Dynamics of DNA Self-Assembly. NANO LETTERS 2023; 23:11734-11741. [PMID: 38079633 DOI: 10.1021/acs.nanolett.3c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Study of the conformational and mechanical behaviors of biomolecular assemblies is vital to the rational design and realization of artificial molecular architectures with biologically relevant functionality. Here, we revealed DNA-modulated and mechanoresponsive excitonic couplings between organic chromophores and verified strong correlations between the excitonic chiroptical responses and the conformational and mechanical states of DNA self-assemblies irrespective of fluorescence background interference. Besides, the excitonic chiroptical effect allowed sensitive monitoring of DNA self-assembled nanostructures due to small molecule bindings or DNA strand displacement reactions. Moreover, we developed a new chiroptical reporter, a DNA-templated dimer of an achiral cyanine5 and an intrinsically chiral BODIPY, that exhibited unique multiple-split spectral line shape of exciton-coupled circular dichroism, largely separated response wavelengths, and enhanced anisotropy dissymmetry factor (g-factor). These results shed light on a promising chiroptical spectroscopic tool for studying biomolecular recognition and binding, conformation dynamics, and soft mechanics in general.
Collapse
Affiliation(s)
- Xiaomei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pan Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yaya Hao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingqian Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - M Dolores Marazuela
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - M Milagros Gomez-Gomez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz L Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Uni-versitaria s/n, Madrid 28040, Spain
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Maingi V, Zhang Z, Thachuk C, Sarraf N, Chapman ER, Rothemund PWK. Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers. Nat Commun 2023; 14:1532. [PMID: 36941256 PMCID: PMC10027858 DOI: 10.1038/s41467-023-36996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Interactions between membrane proteins are essential for cell survival but are often poorly understood. Even the biologically functional ratio of components within a multi-subunit membrane complex-the native stoichiometry-is difficult to establish. Here we demonstrate digital nanoreactors that can control interactions between lipid-bound molecular receptors along three key dimensions: stoichiometric, spatial, and temporal. Each nanoreactor is based on a DNA origami ring, which both templates the synthesis of a liposome and provides tethering sites for DNA-based receptors (modelling membrane proteins). Receptors are released into the liposomal membrane using strand displacement and a DNA logic gate measures receptor heterodimer formation. High-efficiency tethering of receptors enables the kinetics of receptors in 1:1 and 2:2 absolute stoichiometries to be observed by bulk fluorescence, which in principle is generalizable to any ratio. Similar single-molecule-in-bulk experiments using DNA-linked membrane proteins could determine native stoichiometry and the kinetics of membrane protein interactions for applications ranging from signalling research to drug discovery.
Collapse
Affiliation(s)
- Vishal Maingi
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| | - Zhao Zhang
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Chris Thachuk
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA.
| | - Namita Sarraf
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Edwin R Chapman
- Department of Neuroscience and Howard Hughes Medical Institute, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| | - Paul W K Rothemund
- Department of Bioengineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, CA, USA.
- Department of Computation + Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Razbin M, Benetatos P. Grafted Semiflexible Nunchucks with a Magnetic Bead Attached to the Free End. Polymers (Basel) 2022; 14:polym14040695. [PMID: 35215607 PMCID: PMC8875184 DOI: 10.3390/polym14040695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Semiflexible nunchucks are block copolymers, which consist of two long blocks of high bending stiffness jointed together by a short block of low bending stiffness. Semiflexible nunchucks that consist of two DNA nanorods jointed by a short segment of double-stranded (ds) DNA and confined in two dimensions have been used in recent experiments by Fygenson and coworkers as a tool to magnify the bending fluctuations of the linking dsDNA, which in turn are used to deduce the persistence length of dsDNA. In a recent theoretical analysis, we showed that in a semiflexible nunchuck with one end grafted, the fluctuations of the position of the free end that is transverse to the grafting direction exhibit a pronounced bimodality, provided that the bending stiffness of the hinge is not very large. In this article, we theoretically analyse a grafted semiflexible nunchuck with a magnetic bead attached to its free end. We show that a transverse magnetic field induces an asymmetry in the bimodal distribution of the transverse fluctuations of the free end. This asymmetry is very sensitive to interactions with a magnetic field and, in principle, could be used in magnetometry (the measurement of a magnetic field or the magnetic moment of the bead). We also investigate how the response of the bimodal distribution of the transverse fluctuations of the free end to a magnetic field depends on the bending stiffness of the nunchuck hinge. In addition, we analyse the closely related systems of a single filament and two filaments jointed at a kink point with one end grafted and the other end attached to a magnetic bead.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran 14588, Iran
- Correspondence: (M.R.); (P.B.)
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
- Correspondence: (M.R.); (P.B.)
| |
Collapse
|
4
|
Yeou S, Lee NK. Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability. Mol Cells 2022; 45:33-40. [PMID: 34470919 PMCID: PMC8819492 DOI: 10.14348/molcells.2021.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022] Open
Abstract
The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.
Collapse
Affiliation(s)
- Sanghun Yeou
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Orientational Fluctuations and Bimodality in Semiflexible Nunchucks. Polymers (Basel) 2021; 13:polym13122031. [PMID: 34205822 PMCID: PMC8233940 DOI: 10.3390/polym13122031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Semiflexible nunchucks are block copolymers consisting of two long blocks with high bending rigidity jointed by a short block of lower bending stiffness. Recently, the DNA nanotube nunchuck was introduced as a simple nanoinstrument that mechanically magnifies the bending angle of short double-stranded (ds) DNA and allows its measurement in a straightforward way [Fygenson et al., Nano Lett. 2020, 20, 2, 1388-1395]. It comprises two long DNA nanotubes linked by a dsDNA segment, which acts as a hinge. The semiflexible nunchuck geometry also appears in dsDNA with a hinge defect (e.g., a quenched denaturation bubble or a nick), and in end-linked stiff filaments. In this article, we theoretically investigate various aspects of the conformations and the tensile elasticity of semiflexible nunchucks. We analytically calculate the distribution of bending fluctuations of a wormlike chain (WLC) consisting of three blocks with different bending stiffness. For a system of two weakly bending WLCs end-jointed by a rigid kink, with one end grafted, we calculate the distribution of positional fluctuations of the free end. For a system of two weakly bending WLCs end-jointed by a hinge modeled as harmonic bending spring, with one end grafted, we calculate the positional fluctuations of the free end. We show that, under certain conditions, there is a pronounced bimodality in the transverse fluctuations of the free end. For a semiflexible nunchuck under tension, under certain conditions, there is bimodality in the extension as a function of the hinge position. We also show how steric repulsion affects the bending fluctuations of a rigid-rod nunchuck.
Collapse
|
6
|
DNA Nanodevices as Mechanical Probes of Protein Structure and Function. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA nanotechnology has reported a wide range of structurally tunable scaffolds with precise control over their size, shape and mechanical properties. One promising application of these nanodevices is as probes for protein function or determination of protein structure. In this perspective we cover several recent examples in this field, including determining the effect of ligand spacing and multivalency on cell activation, applying forces at the nanoscale, and helping to solve protein structure by cryo-EM. We also highlight some future directions in the chemistry necessary for integrating proteins with DNA nanoscaffolds, as well as opportunities for computational modeling of hybrid protein-DNA nanomaterials.
Collapse
|
7
|
Wang W, Arias DS, Deserno M, Ren X, Taylor RE. Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioeng 2020; 4:041507. [PMID: 33344875 PMCID: PMC7725538 DOI: 10.1063/5.0027022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications.
Collapse
Affiliation(s)
- Weitao Wang
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D. Sebastian Arias
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|