1
|
Zhen W, Germanas T, Weichselbaum RR, Lin W. Multifunctional Nanomaterials Mediate Cholesterol Depletion for Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202412844. [PMID: 39146242 PMCID: PMC11534517 DOI: 10.1002/anie.202412844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Cholesterol is an essential membrane component, and the metabolites from cholesterol play important biological functions to intricately support cancer progression and dampen immune responses. Preclinical and clinical studies have demonstrated the role of cholesterol metabolism regulation on inhibiting tumor growth, remodeling the immunosuppressive tumor microenvironment (TME), and enhancing anti-tumor immunity. In this minireview, we discuss complex cholesterol metabolism in tumors, its important role in cancer progression, and its influences on immune cells in the TME. We provide an overview of recent advances in cancer treatment through regulating cholesterol metabolism. We discuss the design of cholesterol-altering multifunctional nanomaterials to regulate oxidative stress, modulate immune checkpoints, manipulate mechanical stress responses, and alter cholesterol metabolic pathways. Additionally, we examine the interactions between cholesterol metabolism regulation and established cancer treatments with the aim of identifying efficient strategies to disrupt cholesterol metabolism and synergistic combination therapies for effective cancer treatment.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Tomas Germanas
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, United States
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois, 60637, United States
| |
Collapse
|
2
|
Klenow MB, Vigsø MS, Pezeshkian W, Nylandsted J, Lomholt MA, Simonsen AC. Shape of the membrane neck around a hole during plasma membrane repair. Biophys J 2024; 123:1827-1837. [PMID: 38824389 PMCID: PMC11267432 DOI: 10.1016/j.bpj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/05/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
Plasma membrane damage and rupture occurs frequently in cells, and holes must be sealed rapidly to ensure homeostasis and cell survival. The membrane repair machinery is known to involve recruitment of curvature-inducing annexin proteins, but the connection between membrane remodeling and hole closure is poorly described. The induction of curvature by repair proteins leads to the possible formation of a membrane neck around the hole as a key intermediate structure before sealing. We formulate a theoretical model of equilibrium neck shapes to examine the potential connection to a repair mechanism. Using variational calculus, the shape equations for the membrane near a hole are formulated and solved numerically. The system is described under a condition of fixed area, and a shooting approach is applied to fulfill the boundary conditions at the free membrane edge. A state diagram of neck shapes is produced describing the variation in neck morphology with respect to the membrane area. Two distinct types of necks are predicted, one with conformations curved beyond π existing at positive excess area, whereas flat neck conformations (curved below π) have negative excess area. The results indicate that in cells, the supply of additional membrane area and a change in edge tension is linked to the formation of narrow and curved necks. Such necks may be susceptible to passive or actively induced membrane fission as a possible mechanism for hole sealing during membrane repair in cells.
Collapse
Affiliation(s)
- Martin Berg Klenow
- PhyLife - Physical LifeScience, Department of Physics Chemistry and Pharmacy, University of Southern Denmark (SDU), Campusvej 55, Odense M, Denmark
| | - Magnus Staal Vigsø
- PhyLife - Physical LifeScience, Department of Physics Chemistry and Pharmacy, University of Southern Denmark (SDU), Campusvej 55, Odense M, Denmark
| | - Weria Pezeshkian
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Nylandsted
- Danish Cancer Institute (DCI), Copenhagen Ø, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Michael Andersen Lomholt
- PhyLife - Physical LifeScience, Department of Physics Chemistry and Pharmacy, University of Southern Denmark (SDU), Campusvej 55, Odense M, Denmark
| | - Adam Cohen Simonsen
- PhyLife - Physical LifeScience, Department of Physics Chemistry and Pharmacy, University of Southern Denmark (SDU), Campusvej 55, Odense M, Denmark.
| |
Collapse
|
3
|
Zhao Z, Satarifard V, Lipowsky R, Dimova R. Membrane nanotubes transform into double-membrane sheets at condensate droplets. Proc Natl Acad Sci U S A 2024; 121:e2321579121. [PMID: 38900795 PMCID: PMC11214096 DOI: 10.1073/pnas.2321579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular membranes exhibit a multitude of highly curved morphologies such as buds, nanotubes, cisterna-like sheets defining the outlines of organelles. Here, we mimic cell compartmentation using an aqueous two-phase system of dextran and poly(ethylene glycol) encapsulated in giant vesicles. Upon osmotic deflation, the vesicle membrane forms nanotubes, which undergo surprising morphological transformations at the liquid-liquid interfaces inside the vesicles. At these interfaces, the nanotubes transform into cisterna-like double-membrane sheets (DMS) connected to the mother vesicle via short membrane necks. Using super-resolution (stimulated emission depletion) microscopy and theoretical considerations, we construct a morphology diagram predicting the tube-to-sheet transformation, which is driven by a decrease in the free energy. Nanotube knots can prohibit the tube-to-sheet transformation by blocking water influx into the tubes. Because both nanotubes and DMSs are frequently formed by cellular membranes, understanding the formation and transformation between these membrane morphologies provides insight into the origin and evolution of cellular organelles.
Collapse
Affiliation(s)
- Ziliang Zhao
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
- Leibniz Institute of Photonic Technology e.V., Jena07745, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena07743, Germany
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT06520
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| |
Collapse
|
4
|
Zhen W, Luo T, Wang Z, Jiang X, Yuan E, Weichselbaum RR, Lin W. Mechanoregulatory Cholesterol Oxidase-Functionalized Nanoscale Metal-Organic Framework Stimulates Pyroptosis and Reinvigorates T Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305440. [PMID: 37635106 PMCID: PMC10840730 DOI: 10.1002/smll.202305440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Cancer cells alter mechanical tension in their cell membranes. New interventions to regulate cell membrane tension present a potential strategy for cancer therapy. Herein, the increase of cell membrane tension by cholesterol oxidase (COD) via cholesterol depletion in vitro and the design of a COD-functionalized nanoscale metal-organic framework, Hf-TBP/COD, for cholesterol depletion and mechanoregulation of tumors in vivo, are reported. COD is found to deplete cholesterol and disrupt the mechanical properties of lipid bilayers, leading to decreased cell proliferation, migration, and tolerance to oxidative stress. Hf-TBP/COD increases mechanical tension of plasma membranes and osmotic fragility of cancer cells, which induces influx of calcium ions, inhibits cell migration, increases rupturing propensity for effective caspase-1 mediated pyroptosis, and decreases tolerance to oxidative stress. In the tumor microenvironment, Hf-TBP/COD downregulates multiple immunosuppressive checkpoints to reinvigorate T cells and enhance T cell infiltration. Compared to Hf-TBP, Hf-TBP/COD improves anti-tumor immune response and tumor growth inhibition from 54.3% and 79.8% to 91.7% and 95% in a subcutaneous triple-negative breast cancer model and a colon cancer model, respectively.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Zamaletdinov MF, Miettinen MS, Lipowsky R. Probing the elastic response of lipid bilayers and nanovesicles to leaflet tensions via volume per lipid. SOFT MATTER 2023; 19:6929-6944. [PMID: 37664906 DOI: 10.1039/d3sm00351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Biological and biomimetic membranes are based on lipid bilayers, consisting of two monolayers or leaflets. One important but challenging physical parameter of these membranes is their tension. For a long time, this tension was explicitly or implicitly taken to be the bilayer tension, acting on the whole bilayer membrane. More recently, it has been realized that it is useful to decompose the bilayer tension into two leaflet tensions and that these tensions are accessible to molecular dynamics simulations. To divide the bilayer up into two leaflets, it is necessary to introduce a midsurface that defines the spatial extent of the two leaflets. In previous studies, this midsurface was obtained from the density profiles across the bilayer and was then used to compute the molecular area per lipid. Here, we develop an alternative approach based on three-dimensional Voronoi tessellation and molecular volume per lipid. Using this volume-based approach, we determine the reference states with tensionless leaflets as well as the optimal volumes and areas per lipid. The optimal lipid volumes have practically the same value in both leaflets, irrespective of the size and curvature of the nanovesicles, whereas the optimal lipid areas are different for the two leaflets and depend on the vesicle size. In addition, we introduce lateral volume compressibilities to describe the elastic response of the lipid volume to the leaflet tensions. We show that the outer leaflet of a nanovesicle is more densely packed and less compressible than the inner leaflet and that this difference becomes more pronounced for smaller vesicles.
Collapse
Affiliation(s)
- Miftakh F Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Markus S Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
- University of Bergen, Department of Chemistry, 5007 Bergen, Norway
- Computational Biology Unit, Department of Informatics, 5008 Bergen, Norway.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| |
Collapse
|
6
|
Lipowsky R, Pramanik S, Benk AS, Tarnawski M, Spatz JP, Dimova R. Elucidating the Morphology of the Endoplasmic Reticulum: Puzzles and Perspectives. ACS NANO 2023. [PMID: 37377213 DOI: 10.1021/acsnano.3c01338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Artificial or synthetic organelles are a key challenge for bottom-up synthetic biology. So far, synthetic organelles have typically been based on spherical membrane compartments, used to spatially confine selected chemical reactions. In vivo, these compartments are often far from being spherical and can exhibit rather complex architectures. A particularly fascinating example is provided by the endoplasmic reticulum (ER), which extends throughout the whole cell by forming a continuous network of membrane nanotubes connected by three-way junctions. The nanotubes have a typical diameter of between 50 and 100 nm. In spite of much experimental progress, several fundamental aspects of the ER morphology remain elusive. A long-standing puzzle is the straight appearance of the tubules in the light microscope, which form irregular polygons with contact angles close to 120°. Another puzzling aspect is the nanoscopic shapes of the tubules and junctions, for which very different images have been obtained by electron microcopy and structured illumination microscopy. Furthermore, both the formation and maintenance of the reticular networks require GTP and GTP-hydrolyzing membrane proteins. In fact, the networks are destroyed by the fragmentation of nanotubes when the supply of GTP is interrupted. Here, it is argued that all of these puzzling observations are intimately related to each other and to the dimerization of two membrane proteins anchored to the same membrane. So far, the functional significance of this dimerization process remained elusive and, thus, seemed to waste a lot of GTP. However, this process can generate an effective membrane tension that stabilizes the irregular polygonal geometry of the reticular networks and prevents the fragmentation of their tubules, thereby maintaining the integrity of the ER. By incorporating the GTP-hydrolyzing membrane proteins into giant unilamellar vesicles, the effective membrane tension will become accessible to systematic experimental studies.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Amelie S Benk
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | | | - Joachim P Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
7
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
8
|
Ghosh R, Satarifard V, Lipowsky R. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nat Commun 2023; 14:615. [PMID: 36739277 PMCID: PMC9899248 DOI: 10.1038/s41467-023-35847-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
During endocytosis of nanoparticles by cells, the cellular membranes engulf the particles, thereby forming a closed membrane neck that subsequently undergoes fission. For solid nanoparticles, these endocytic processes have been studied in some detail. Recently, such processes have also been found for liquid and condensate droplets, both in vitro and in vivo. These processes start with the spreading of the droplet onto the membrane followed by partial or complete engulfment of the droplet. Here, we use molecular dynamics simulations to study these processes at the nanoscale, for nano-sized droplets and vesicles. For both partial and complete engulfment, we observe two different endocytic pathways. Complete engulfment leads to a closed membrane neck which may be formed in a circular or strongly non-circular manner. A closed circular neck undergoes fission, thereby generating two nested daughter vesicles whereas a non-circular neck hinders the fission process. Likewise, partial engulfment of larger droplets leads to open membrane necks which can again have a circular or non-circular shape. Two key parameters identified here for these endocytic pathways are the transbilayer stress asymmetry of the vesicle membrane and the positive or negative line tension of the membrane-droplet contact line.
Collapse
Affiliation(s)
- Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Icahn School of Medicine Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Yale Institute for Network Science, Yale University, New Haven, CT, 06520, USA
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
9
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|
10
|
Wubshet NH, Liu AP. Methods to mechanically perturb and characterize GUV-based minimal cell models. Comput Struct Biotechnol J 2022; 21:550-562. [PMID: 36659916 PMCID: PMC9816913 DOI: 10.1016/j.csbj.2022.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Cells shield organelles and the cytosol via an active boundary predominantly made of phospholipids and membrane proteins, yet allowing communication between the intracellular and extracellular environment. Micron-sized liposome compartments commonly known as giant unilamellar vesicles (GUVs) are used to model the cell membrane and encapsulate biological materials and processes in a cell-like confinement. In the field of bottom-up synthetic biology, many have utilized GUVs as substrates to study various biological processes such as protein-lipid interactions, cytoskeletal assembly, and dynamics of protein synthesis. Like cells, it is ideal that GUVs are also mechanically durable and able to stay intact when the inner and outer environment changes. As a result, studies have demonstrated approaches to tune the mechanical properties of GUVs by modulating membrane composition and lumenal material property. In this context, there have been many different methods developed to test the mechanical properties of GUVs. In this review, we will survey various perturbation techniques employed to mechanically characterize GUVs.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Toyota T, Zhang Y. Identifying and Manipulating Giant Vesicles: Review of Recent Approaches. MICROMACHINES 2022; 13:644. [PMID: 35630111 PMCID: PMC9144095 DOI: 10.3390/mi13050644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
Giant vesicles (GVs) are closed bilayer membranes that primarily comprise amphiphiles with diameters of more than 1 μm. Compared with regular vesicles (several tens of nanometers in size), GVs are of greater scientific interest as model cell membranes and protocells because of their structure and size, which are similar to those of biological systems. Biopolymers and nano-/microparticles can be encapsulated in GVs at high concentrations, and their application as artificial cell bodies has piqued interest. It is essential to develop methods for investigating and manipulating the properties of GVs toward engineering applications. In this review, we discuss current improvements in microscopy, micromanipulation, and microfabrication technologies for progress in GV identification and engineering tools. Combined with the advancement of GV preparation technologies, these technological advancements can aid the development of artificial cell systems such as alternative tissues and GV-based chemical signal processing systems.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| |
Collapse
|
12
|
Jahnke K, Maurer SJ, Weber C, Bücher JE, Schoenit A, D’Este E, Cavalcanti-Adam EA, Göpfrich K. Actomyosin-Assisted Pulling of Lipid Nanotubes from Lipid Vesicles and Cells. NANO LETTERS 2022; 22:1145-1150. [PMID: 35089720 PMCID: PMC8832490 DOI: 10.1021/acs.nanolett.1c04254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Molecular motors are pivotal for intracellular transport as well as cell motility and have great potential to be put to use outside cells. Here, we exploit engineered motor proteins in combination with self-assembly of actin filaments to actively pull lipid nanotubes from giant unilamellar vesicles (GUVs). In particular, actin filaments are bound to the outer GUV membrane and the GUVs are seeded on a heavy meromyosin-coated substrate. Upon addition of ATP, hollow lipid nanotubes with a length of tens of micrometer are pulled from single GUVs due to the motor activity. We employ the same mechanism to pull lipid nanotubes from different types of cells. We find that the length and number of nanotubes critically depends on the cell type, whereby suspension cells form bigger networks than adherent cells. This suggests that molecular machines can be used to exert forces on living cells to probe membrane-to-cortex attachment.
Collapse
Affiliation(s)
- Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Stefan J. Maurer
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Cornelia Weber
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | | | - Andreas Schoenit
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Elisa D’Este
- Optical
Microscopy Facility, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
14
|
Zhao Z, Roy D, Steinkühler J, Robinson T, Lipowsky R, Dimova R. Super-Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106633. [PMID: 34710248 DOI: 10.1002/adma.202106633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Molecular crowding is an inherent feature of cell interiors. Synthetic cells as provided by giant unilamellar vesicles (GUVs) encapsulating macromolecules (poly(ethylene glycol) and dextran) represent an excellent mimetic system to study membrane transformations associated with molecular crowding and protein condensation. Similarly to cells, such GUVs exhibit highly curved structures like nanotubes. Upon liquid-liquid phase separation their membrane deforms into apparent kinks at the contact line of the interface between the two aqueous phases. These structures, nanotubes, and kinks, have dimensions below optical resolution. Here, these are studied with super-resolution stimulated emission depletion (STED) microscopy facilitated by immobilization in a microfluidic device. The cylindrical nature of the nanotubes based on the superior resolution of STED and automated data analysis is demonstrated. The deduced membrane spontaneous curvature is in excellent agreement with theoretical predictions. Furthermore, the membrane kink-like structure is resolved as a smoothly curved membrane demonstrating the existence of the intrinsic contact angle, which describes the wettability contrast of the encapsulated phases to the membrane. Resolving these highly curved membrane structures with STED imaging provides important insights in the membrane properties and interactions underlying cellular activities.
Collapse
Affiliation(s)
- Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743, Jena, Germany
| | - Debjit Roy
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Jan Steinkühler
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Tom Robinson
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| |
Collapse
|
15
|
Steinkühler J, Fonda P, Bhatia T, Zhao Z, Leomil FSC, Lipowsky R, Dimova R. Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102109. [PMID: 34569194 PMCID: PMC8564416 DOI: 10.1002/advs.202102109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2-4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a "superelastic" response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Present address:
Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60657USA
| | - Piermarco Fonda
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| | - Tripta Bhatia
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Department of Physical SciencesIndian Institute of Science Education and Research MohaliSector 81, Knowledge City, ManauliSAS NagarPunjab140306India
| | - Ziliang Zhao
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Present address:
Leibniz Institute of Photonic TechnologyJena07745Germany
| | - Fernanda S. C. Leomil
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo043039‐032Brazil
| | - Reinhard Lipowsky
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| | - Rumiana Dimova
- Theory and Bio‐SystemsMax Planck Institute of Colloids and InterfacesScience Park GolmPotsdam14424Germany
| |
Collapse
|
16
|
Lira RB, Leomil FSC, Melo RJ, Riske KA, Dimova R. To Close or to Collapse: The Role of Charges on Membrane Stability upon Pore Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004068. [PMID: 34105299 PMCID: PMC8188222 DOI: 10.1002/advs.202004068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Indexed: 05/28/2023]
Abstract
Resealing of membrane pores is crucial for cell survival. Membrane surface charge and medium composition are studied as defining regulators of membrane stability. Pores are generated by electric field or detergents. Giant vesicles composed of zwitterionic and negatively charged lipids mixed at varying ratios are subjected to a strong electric pulse. Interestingly, charged vesicles appear prone to catastrophic collapse transforming them into tubular structures. The spectrum of destabilization responses includes the generation of long-living submicroscopic pores and partial vesicle bursting. The origin of these phenomena is related to the membrane edge tension, which governs pore closure. This edge tension significantly decreases as a function of the fraction of charged lipids. Destabilization of charged vesicles upon pore formation is universal-it is also observed with other poration stimuli. Disruption propensity is enhanced for membranes made of lipids with higher degree of unsaturation. It can be reversed by screening membrane charge in the presence of calcium ions. The observed findings in light of theories of stability and curvature generation are interpreted and mechanisms acting in cells to prevent total membrane collapse upon poration are discussed. Enhanced membrane stability is crucial for the success of electroporation-based technologies for cancer treatment and gene transfer.
Collapse
Affiliation(s)
- Rafael B. Lira
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
- Department of Theory and BiosystemsMax Planck Institute of Colloids and InterfacesPotsdam14424Germany
- Present address:
Moleculaire BiofysicaZernike InstituutRijksuniversiteitGroningen9747 AGThe Netherlands
| | | | - Renan J. Melo
- Instituto de FísicaUniversidade de São PauloSão Paulo05508‐090Brazil
| | - Karin A. Riske
- Departamento de BiofísicaUniversidade Federal de São PauloSão Paulo04039‐032Brazil
| | - Rumiana Dimova
- Department of Theory and BiosystemsMax Planck Institute of Colloids and InterfacesPotsdam14424Germany
| |
Collapse
|
17
|
Biomechanics of Neutrophil Tethers. Life (Basel) 2021; 11:life11060515. [PMID: 34073130 PMCID: PMC8230032 DOI: 10.3390/life11060515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Leukocytes, including neutrophils, propelled by blood flow, can roll on inflamed endothelium using transient bonds between selectins and their ligands, and integrins and their ligands. When such receptor–ligand bonds last long enough, the leukocyte microvilli become extended and eventually form thin, 20 µm long tethers. Tether formation can be observed in blood vessels in vivo and in microfluidic flow chambers. Tethers can also be extracted using micropipette aspiration, biomembrane force probe, optical trap, or atomic force microscopy approaches. Here, we review the biomechanical properties of leukocyte tethers as gleaned from such measurements and discuss the advantages and disadvantages of each approach. We also review and discuss viscoelastic models that describe the dependence of tether formation on time, force, rate of loading, and cell activation. We close by emphasizing the need to combine experimental observations with quantitative models and computer simulations to understand how tether formation is affected by membrane tension, membrane reservoir, and interactions of the membrane with the cytoskeleton.
Collapse
|
18
|
Lipowsky R, Dimova R. Introduction to remodeling of biomembranes. SOFT MATTER 2021; 17:214-221. [PMID: 33406179 DOI: 10.1039/d0sm90234a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In general, biomembranes and giant vesicles can respond to cues in their aqueous environment by remodeling their molecular composition, shape, or topology. This themed collection focuses on remodeling of membrane shape which is intimately related to membrane curvature. In this introductory contribution, we clarify the different notions of curvature and describe the general nanoscopic mechanisms for curvature generation and membrane scaffolding. At the end, we give a brief outlook on membrane tension.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|