1
|
Joseph E, Tunge JA. Cobalt-Catalyzed Allylic Alkylation at sp 3-Carbon Centers. Chemistry 2024; 30:e202401707. [PMID: 38869446 DOI: 10.1002/chem.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The rising demand and financial costs of noble transition metal catalysts have emphasized the need for sustainable catalytic approaches. Over the past few years, base-metal catalysts have emerged as ideal candidates to replace their noble-metal counterparts because of their abundance and easiness of handling. Despite the significant advancements achieved with precious transition metals, earth-abundant cobalt catalysts have emerged as efficient alternatives for allylic substitution reactions. In this review, allylic alkylations at sp3-carbon centers mediated by cobalt will be discussed, with a special focus on the mechanistic features, scope, and limitations.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| |
Collapse
|
2
|
Guo P, Jin H, Han J, Xu L, Li P, Zhan M. Nickel-Catalyzed Negishi Cross-Coupling of Alkyl Halides, Including Unactivated Tertiary Halides, with a Boron-Stabilized Organozinc Reagent. Org Lett 2023. [PMID: 36866526 DOI: 10.1021/acs.orglett.3c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Nickel-catalyzed cross-coupling of unactivated tertiary alkyl electrophiles with alkylmetal reagents is still a challenge. We report herein a nickel-catalyzed Negishi cross-coupling of alkyl halides, including unactivated tertiary halides, with boron-stabilized organozinc reagent BpinCH2ZnI, yielding versatile organoboron products with high functional-group tolerance. Importantly, the Bpin group was found to be indispensable for accessing the quaternary carbon center. The synthetic practicability of the prepared quaternary organoboronates was demonstrated by their conversion to other useful compounds.
Collapse
Affiliation(s)
- Panchi Guo
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Hao Jin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jinhui Han
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China
| | - Miao Zhan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
3
|
Liu Q, Tan S, Sun R, Nie G, Liu Y, Wu Q, Wang Z, Yu H, Yu S, Jiang X, Zhang F, Liu S. Ni-B/Mesoporous Graphitic Carbon Nitride Catalyst Boosts Natural Product Cis-pinane Via Catalytic Reduction of α-Pinene. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Zhao WT, Meng H, Lin JN, Shu W. Ligand-Controlled Nickel-Catalyzed Regiodivergent Cross-Electrophile Alkyl-Alkyl Couplings of Alkyl Halides. Angew Chem Int Ed Engl 2023; 62:e202215779. [PMID: 36515409 DOI: 10.1002/anie.202215779] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Functionalizing specific positions on a saturated alkyl molecule is a key challenge in synthetic chemistry. Herein, a ligand-controlled regiodivergent alkylations of alkyl bromides at different positions by Ni-catalyzed alkyl-alkyl cross-electrophile coupling with the second alkyl bromides has been developed. The reaction undergoes site-selective isomerization on one alkyl bromides in a controlled manner, providing switchable access to diverse alkylated structures at different sites of alkyl bromides. The reaction occurs at three similar positions with excellent chemo- and regioselectivity, representing a remarkable ligand tuned reactivity between alkyl-alkyl cross-coupling and nickel migration along the hydrocarbon side chain. This reaction offers a catalytic platform to diverse saturated architectures by alkyl-alkyl bond-formation from identical starting materials.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Huan Meng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jia-Ni Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
5
|
Yang Q, Zhao Y, Ma D. Cu-Mediated Ullmann-Type Cross-Coupling and Industrial Applications in Route Design, Process Development, and Scale-up of Pharmaceutical and Agrochemical Processes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qiang Yang
- Synthetic Molecule Design and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Yinsong Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Arakcheeva A, Bi WH, Baral PR, Magrez A. Self-flux-grown Ba 4Fe 4ClO 9.5−x crystals exhibiting structures with tunable modulation. CrystEngComm 2022; 24:3529-3536. [PMID: 35707520 PMCID: PMC9112865 DOI: 10.1039/d1ce01657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022]
Abstract
The synthesis and X-ray structural study of the new family of compounds Ba4Fe4ClO9.5−x with tunable structural modulation are reported. The framework of the structure has the Ba2Fe4O9.5−x composition, with open hexagonal channels extending along the c-axis. The channels are filled with linear [Ba–Cl–Ba] triplets. The oxygen stoichiometry and the oxidation state of iron both are controlled by the redox conditions during crystal preparation. The modulation of the crystal structure arises from the distribution of the oxygen atoms in the framework and iron coordination polyhedra are a combination of FeO4-tetrahedra, FeO5-bipyramids, and FeO6-octahedra. The structure modulation also originates from the ordered or disordered distribution of the [Ba–Cl–Ba] triplets filling the channels which is also affected by the conditions of the thermal treatment of the crystals. The structure investigation reveals a composition variation from Ba4Fe4ClO9.5 (x = 0), in which Fe exhibits a 3+ oxidation state, to Ba4Fe4ClO8 (x = 1.5) with the framework built exclusively of FeO4 tetrahedra. Ba4Fe4ClO9.5−x compounds are built of a Ba2Fe4O9.5−x framework with open hexagonal channels. (Ba–Cl–Ba) trimers located in the channels and the framework O atoms cause incommensurability, which is tuned under different annealing conditions.![]()
Collapse
Affiliation(s)
- Alla Arakcheeva
- SB, IPHYS, Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Phase Solutions Co Ltd, ch. des Mésanges 7, Lausanne 1012, Switzerland
| | - Wen Hua Bi
- SB, IPHYS, Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Priya Ranjan Baral
- SB, IPHYS, Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Arnaud Magrez
- SB, IPHYS, Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Chen C, Huang Y, Ding J, Liu L, Zhu B. Palladium‐Catalyzed Carbamoyl‐Carbamoylation/ Carboxylation/Thioesterification of Alkene‐Tethered Carbamoyl Chlorides Using Mo(CO)
6
as the Carbonyl Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yujie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
8
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
9
|
Hewitt KA, Herbert CA, Matus AC, Jarvo ER. Nickel-Catalyzed Kumada Cross-Coupling Reactions of Benzylic Sulfonamides. Molecules 2021; 26:5947. [PMID: 34641491 PMCID: PMC8512530 DOI: 10.3390/molecules26195947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we report a Kumada cross-coupling reaction of benzylic sulfonamides. The scope of the transformation includes acyclic and cyclic sulfonamide precursors that cleanly produce highly substituted acyclic fragments. Preliminary data are consistent with a stereospecific mechanism that allows for a diastereoselective reaction.
Collapse
Affiliation(s)
| | | | | | - Elizabeth R. Jarvo
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA; (K.A.H.); (C.A.H.); (A.C.M.)
| |
Collapse
|