1
|
Papidocha SM, Wilke HR, Patej KJ, Isomura M, Stucky TJ, Rothenbühler L, Carreira EM. Enantiospecific Synthesis of α-Tertiary Amines: Ruthenium-Catalyzed Allylic Amination with Aqueous Ammonia. J Am Chem Soc 2025; 147:11675-11681. [PMID: 40145970 DOI: 10.1021/jacs.5c01928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Ammonia stands out as the most available, cost-effective, and atom-economical source of nitrogen for organic synthesis. In the laboratory, it is safely and most conveniently handled in aqueous solution. Despite the advantages, the direct application of aqueous ammonia in the field of transition-metal catalysis remains a significant challenge. In this study, we report the first ruthenium-catalyzed allylic substitution using ammonia. The catalytic system, consisting of [Cp*Ru(MeCN)3]PF6 and a phenoxythiazoline ligand, enables the enantiospecific amination of tertiary allylic carbonates in aqueous media and affords enantioenriched primary amines as single regioisomers in high yields.
Collapse
Affiliation(s)
- Sven M Papidocha
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Henrik R Wilke
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Kacper J Patej
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Mayuko Isomura
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Tim J Stucky
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Lukas Rothenbühler
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| | - Erick M Carreira
- ETH Zürich, Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Uzunlu Ince N, Pongrácz P, Kollár L, Szilágyi A, Takács A, Mika LT. Alkyl 4-Alkoxyvalerates: Characterization and Application in Pd-Catalyzed Aminocarbonylation of Iodo(hetero)arene Compounds. Chempluschem 2025; 90:e202400713. [PMID: 39714987 DOI: 10.1002/cplu.202400713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The palladium-catalyzed aminocarbonylation is one of the most effective methods for the synthesis of carboxamides having great importance. Replacing fossil-based organic solvents in this routinely used catalytic protocol with biomass-derived media is crucial for developing environmentally safe alternatives and towards sustainability considerations. In this study, the open-chain derivatives of bio-originated substance γ-valerolactone i. e. alkyl 4-alkoxyvalerates (alkyl: methyl, ethyl, and propyl) were characterized and tested as potential polar aprotic alternatives of fossil-based common N,N-dimethylformamide (DMF) in aminocarbonylation protocols. First, the temperature-dependent physicochemical properties of alkyl 4-alkoxyvalerates were determined. Based on their characteristics, methyl 4-methoxyvalerate (Me-4MeOV) was selected and introduced in the Pd-catalyzed aminocarbonylation of iodobenzene and morpholine as a model reaction, and an optimization study was carried out. Using the optimized conditions, several substituted iodobenzenes, as well as heteroaryl iodides, were successfully applied resulting in the target carboxamides selectively in short reaction time. Furthermore, the aminocarbonylation of iodobenzene in the presence of various amines was also accomplished extending the scope of the carboxamides produced in this alternative medium. Considering our observations, such as high conversions (up to 95 %) in short reaction time and selective amide formation, it has been justified that Me-4MeOV could be an appropriate alternative medium in aminocarbonylation protocols.
Collapse
Affiliation(s)
- Nuray Uzunlu Ince
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - Péter Pongrácz
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László Kollár
- Department of General and Inorganic Chemistry, University of Pécs, Ifjúság u. 6., H-7624, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Material Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Attila Takács
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20., H-7624, Pécs, Hungary
- HUN-REN-PTE Research Group for Selective Chemical Syntheses, Ifjúság u. 6., H-7624, Pécs, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
3
|
Medgyesi Z, Mika LT. Characterization and Application of Cyrene as a Biomass-Based Solvent for Homogeneous Heck-Coupling Reaction. Chempluschem 2024; 89:e202400379. [PMID: 38980081 DOI: 10.1002/cplu.202400379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Cyrene, a renewable, non-toxic substance having negligible vapor pressure, even at high temperatures, was proposed as a reaction medium for homogeneous Pd-catalyzed Heck-coupling reactions. It was first characterized by its temperature-dependent physicochemical properties, i. e., vapor pressure, density, surface tension, heat capacity, and viscosity, the key parameters of its reaction and process chemistry. Its refractive indices in the function of temperature were also determined. Hereafter, the effect of reaction parameters (Pd source, nature of the base, the water content of the reaction mixture, leaving group (-I, -Br, -Cl, and -OTf of aromatic substrates) on Pd-catalyzed Heck-coupling reaction was investigated using iodobenzene and styrene as model substrates. Subsequently, 4-substituted iodobenzene and styrene derivatives were applied to investigate the effect of electronic parameters on the reaction efficiency and functional group tolerance. To demonstrate the applicability of the system, thirteen stilbene derivatives were isolated with good to high yields and purity (>95 %) using 0.2 mol % of Pd, 1.5 eq. of Et3N as a base, in 1 mL of Cyrene for 2 h at 100 °C.
Collapse
Affiliation(s)
- Zoltán Medgyesi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
4
|
Fan F, Peng Y, Zhang X, Wang S, Luo Z, Luo M, Zeng X. Metal-carbene-guided twofold cross-coupling of ethers with chromium catalysis. Nat Commun 2024; 15:6455. [PMID: 39085244 PMCID: PMC11292013 DOI: 10.1038/s41467-024-50675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Coupling by metal-carbene transfer enables the formation of several different bonds at the carbenoid site, enabling prochiral Csp3 centers that are fundamental three-dimensional substructures for medicines to be forged with increased efficiency. However, strategies using bulk chemicals are rare because of the challenge of breaking two unactivated geminal bonds. Herein, we report the reactivity of ethers to form metal-carbene intermediate by cleavage of α-Csp3-H/Csp3-O bonds, which achieve selective coupling with arylmagnesium bromides and chlorosilanes. These couplings are catalysed by cyclic (alkyl)(amino)carbene-chromium complex and enable the one-step formation of 1,n-arylsilyl alcohols and α-arylated silanes. Mechanistic studies indicate that the in-situ formed low-valent Cr might react with iodobenzene to form phenyl radical species, which abstracts the α-H atom of ether in giving α-oxy radical. The latter combines with Cr by breaking α-Csp3-O bond to afford metal-carbene intermediate, which couples with aryl Grignard and chlorosilane to form two σ-bonds.
Collapse
Affiliation(s)
- Fei Fan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yong Peng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Sha Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Hisata Y, Washio T, Takizawa S, Ogoshi S, Hoshimoto Y. In-silico-assisted derivatization of triarylboranes for the catalytic reductive functionalization of aniline-derived amino acids and peptides with H 2. Nat Commun 2024; 15:3708. [PMID: 38714662 PMCID: PMC11076482 DOI: 10.1038/s41467-024-47984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/16/2024] [Indexed: 05/10/2024] Open
Abstract
Cheminformatics-based machine learning (ML) has been employed to determine optimal reaction conditions, including catalyst structures, in the field of synthetic chemistry. However, such ML-focused strategies have remained largely unexplored in the context of catalytic molecular transformations using Lewis-acidic main-group elements, probably due to the absence of a candidate library and effective guidelines (parameters) for the prediction of the activity of main-group elements. Here, the construction of a triarylborane library and its application to an ML-assisted approach for the catalytic reductive alkylation of aniline-derived amino acids and C-terminal-protected peptides with aldehydes and H2 is reported. A combined theoretical and experimental approach identified the optimal borane, i.e., B(2,3,5,6-Cl4-C6H)(2,6-F2-3,5-(CF3)2-C6H)2, which exhibits remarkable functional-group compatibility toward aniline derivatives in the presence of 4-methyltetrahydropyran. The present catalytic system generates H2O as the sole byproduct.
Collapse
Affiliation(s)
- Yusei Hisata
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry and Artificial Intelligence Research Center, SANKEN, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Center for Future Innovation (CFi), Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Morón-Ortiz Á, Mapelli-Brahm P, Meléndez-Martínez AJ. Sustainable Green Extraction of Carotenoid Pigments: Innovative Technologies and Bio-Based Solvents. Antioxidants (Basel) 2024; 13:239. [PMID: 38397837 PMCID: PMC10886214 DOI: 10.3390/antiox13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids are ubiquitous and versatile isoprenoid compounds. The intake of foods rich in these pigments is often associated with health benefits, attributable to the provitamin A activity of some of them and different mechanisms. The importance of carotenoids and their derivatives for the production of foods and health-promotion through the diet is beyond doubt. In the new circular economy paradigm, the recovery of carotenoids in the biorefinery process is highly desirable, for which greener processes and solvents are being advocated for, considering the many studies being conducted at the laboratory scale. This review summarizes information on different extraction technologies (ultrasound, microwaves, pulsed electric fields, pressurized liquid extraction, sub- and supercritical fluid extraction, and enzyme-assisted extraction) and green solvents (ethyl lactate, 2-methyltetrahydrofuran, natural deep eutectic solvents, and ionic liquids), which are potential substitutes for more toxic and less environmentally friendly solvents. Additionally, it discusses the results of the latest studies on the sustainable green extraction of carotenoids. The conclusions drawn from the review indicate that while laboratory results are often promising, the scalability to real industrial scenarios poses a significant challenge. Furthermore, incorporating life cycle assessment analyses is crucial for a comprehensive evaluation of the sustainability of innovative extraction processes compared to industry-standard methods.
Collapse
Affiliation(s)
| | - Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.M.-O.); (A.J.M.-M.)
| | | |
Collapse
|
7
|
Alkyl Levulinates and 2-Methyltetrahydrofuran: Possible Biomass-Based Solvents in Palladium-Catalyzed Aminocarbonylation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010442. [PMID: 36615634 PMCID: PMC9823927 DOI: 10.3390/molecules28010442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
In this research, ethyl levulinate, methyl levulinate, and 2-methyltetrahydrofuran as bio-derived hemicellulose-based solvents were applied as green alternatives in palladium-catalyzed aminocarbonylation reactions. Iodobenzene and morpholine were used in optimization reactions under different conditions, such as temperatures, pressures, and ligands. It was shown that the XantPhos ligand had a great influence on conversion (98%) and chemoselectivity (100% carboxamide), compared with the monodentate PPh3. Following this study, the optimized conditions were used to extend the scope of substrates with nineteen candidates (various para-, ortho-, and meta-substituted iodobenzene derivatives and iodo-heteroarenes), as well as eight different amine nucleophiles.
Collapse
|
8
|
Miele M, Pillari V, Pace V, Alcántara AR, de Gonzalo G. Application of Biobased Solvents in Asymmetric Catalysis. Molecules 2022; 27:molecules27196701. [PMID: 36235236 PMCID: PMC9570574 DOI: 10.3390/molecules27196701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The necessity of more sustainable conditions that follow the twelve principles of Green Chemistry have pushed researchers to the development of novel reagents, catalysts and solvents for greener asymmetric methodologies. Solvents are in general a fundamental part for developing organic processes, as well as for the separation and purification of the reaction products. By this reason, in the last years, the application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources. In the present revision, the recent application of these biobased solvents in the synthesis of optically active compounds employing different catalytic methodologies, including biocatalysis, organocatalysis and metal catalysis, will be analyzed to provide a novel tool for carrying out more ecofriendly organic processes.
Collapse
Affiliation(s)
- Margherita Miele
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
| | - Veronica Pillari
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
| | - Vittorio Pace
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Vienna, Austria
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| | - Gonzalo de Gonzalo
- Department of Organic Chemistry, University of Seville, c/ Profesor García González 1, 41014 Seville, Spain
- Correspondence: (V.P.); (A.R.A.); (G.d.G.); Tel.: +39-011-6707934 (V.P.); +34-913941821 (A.R.A.); +34-955420802 (G.d.G.)
| |
Collapse
|
9
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|