1
|
Kalikadien AV, Mirza A, Hossaini AN, Sreenithya A, Pidko EA. Paving the road towards automated homogeneous catalyst design. Chempluschem 2024; 89:e202300702. [PMID: 38279609 DOI: 10.1002/cplu.202300702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Indexed: 01/28/2024]
Abstract
In the past decade, computational tools have become integral to catalyst design. They continue to offer significant support to experimental organic synthesis and catalysis researchers aiming for optimal reaction outcomes. More recently, data-driven approaches utilizing machine learning have garnered considerable attention for their expansive capabilities. This Perspective provides an overview of diverse initiatives in the realm of computational catalyst design and introduces our automated tools tailored for high-throughput in silico exploration of the chemical space. While valuable insights are gained through methods for high-throughput in silico exploration and analysis of chemical space, their degree of automation and modularity are key. We argue that the integration of data-driven, automated and modular workflows is key to enhancing homogeneous catalyst design on an unprecedented scale, contributing to the advancement of catalysis research.
Collapse
Affiliation(s)
- Adarsh V Kalikadien
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adrian Mirza
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Aydin Najl Hossaini
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Avadakkam Sreenithya
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Akana ME, Tcyrulnikov S, Akana-Schneider BD, Reyes GP, Monfette S, Sigman MS, Hansen EC, Weix DJ. Computational Methods Enable the Prediction of Improved Catalysts for Nickel-Catalyzed Cross-Electrophile Coupling. J Am Chem Soc 2024; 146:3043-3051. [PMID: 38276910 DOI: 10.1021/jacs.3c09554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Cross-electrophile coupling has emerged as an attractive and efficient method for the synthesis of C(sp2)-C(sp3) bonds. These reactions are most often catalyzed by nickel complexes of nitrogenous ligands, especially 2,2'-bipyridines. Precise prediction, selection, and design of optimal ligands remains challenging, despite significant increases in reaction scope and mechanistic understanding. Molecular parameterization and statistical modeling provide a path to the development of improved bipyridine ligands that will enhance the selectivity of existing reactions and broaden the scope of electrophiles that can be coupled. Herein, we describe the generation of a computational ligand library, correlation of observed reaction outcomes with features of the ligands, and the in silico design of improved bipyridine ligands for Ni-catalyzed cross-electrophile coupling. The new nitrogen-substituted ligands display a 5-fold increase in selectivity for product formation versus homodimerization when compared to the current state of the art. This increase in selectivity and yield was general for several cross-electrophile couplings, including the challenging coupling of an aryl chloride with an N-alkylpyridinium salt.
Collapse
Affiliation(s)
- Michelle E Akana
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sergei Tcyrulnikov
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brett D Akana-Schneider
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Giselle P Reyes
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric C Hansen
- Chemical Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Chen SS, Meyer Z, Jensen B, Kraus A, Lambert A, Ess DH. ReaLigands: A Ligand Library Cultivated from Experiment and Intended for Molecular Computational Catalyst Design. J Chem Inf Model 2023; 63:7412-7422. [PMID: 37987743 DOI: 10.1021/acs.jcim.3c01310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Computational catalyst design requires identification of a metal and ligand that together result in the desired reaction reactivity and/or selectivity. A major impediment to translating computational designs to experiments is evaluating ligands that are likely to be synthesized. Here, we provide a solution to this impediment with our ReaLigands library that contains >30,000 monodentate, bidentate (didentate), tridentate, and larger ligands cultivated by dismantling experimentally reported crystal structures. Individual ligands from mononuclear crystal structures were identified using a modified depth-first search algorithm and charge was assigned using a machine learning model based on quantum-chemical calculated features. In the library, ligands are sorted based on direct ligand-to-metal atomic connections and on denticity. Representative principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) analyses were used to analyze several tridentate ligand categories, which revealed both the diversity of ligands and connections between ligand categories. We also demonstrated the utility of this library by implementing it with our building and optimization tools, which resulted in the very rapid generation of barriers for 750 bidentate ligands for Rh-hydride ethylene migratory insertion.
Collapse
Affiliation(s)
- Shu-Sen Chen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| | - Zack Meyer
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| | - Brendan Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| | - Alex Kraus
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| | - Allison Lambert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604 United States
| |
Collapse
|
4
|
Gensch T, Smith SR, Colacot TJ, Timsina YN, Xu G, Glasspoole BW, Sigman MS. Design and Application of a Screening Set for Monophosphine Ligands in Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tobias Gensch
- Department of Chemistry, TU Berlin, Straße des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Sleight R. Smith
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Thomas J. Colacot
- MilliporeSigma, 6000 N. Teutonia Ave, Milwaukee, Wisconsin 53209, United States
| | - Yam N. Timsina
- MilliporeSigma, 6000 N. Teutonia Ave, Milwaukee, Wisconsin 53209, United States
| | - Guolin Xu
- MilliporeSigma, 6000 N. Teutonia Ave, Milwaukee, Wisconsin 53209, United States
| | - Ben W. Glasspoole
- MilliporeSigma, 6000 N. Teutonia Ave, Milwaukee, Wisconsin 53209, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|