1
|
Stoffán G, Lőrincz Z, Pusztai É, Madarász L, Tacsi K, Marosi G, Pataki H. Development of Continuous Additive-Controlled MSMPR Crystallization by DoE-Based Batch Experiments. Ind Eng Chem Res 2024; 63:13709-13722. [PMID: 39130744 PMCID: PMC11311132 DOI: 10.1021/acs.iecr.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Additive-controlled crystallization is a promising method to improve crystal morphology and produce solid drug particles with the desired technological and pharmacological properties. However, its adaptation to continuous operation is a hardly researched area. Accordingly, in this work, we aimed to come up with a methodology that provides the systematic and fast development of a continuous three-stage MSMPR cascade crystallizer. For that, a cooling crystallization of famotidine (FMT) from water, in the presence of a formulation additive, poly(vinylpyrrolidone) (PVP-K12), was developed. Process parameters with a significant impact on product quality and quantity were examined in batch mode through a 24-1 fractional factorial design for the implementation of additive-controlled continuous crystallization. These batch experiments represented one residence time of the continuous system. Based on the statistical analysis, the residence time (RT) had the highest effect on yield, while the polymer amount was critical from the product polymorphism, crystal size, and flowability points of view. The values of critical process parameters in continuous operation were fixed according to the batch results. Two continuous cooling crystallization experiments were carried out, one with 1.25 w/wFMT% PVP-K12 and one with no additive. A mixture of FMT polymorphs (Form A and Form B) crystallized without the additive through five residence times (>6.5 h) with 70.8% overall yield. On the other hand, the additive-controlled continuous experiment resulted pure and homogeneous Form A product with excellent flowability. The system could be operated for >6.5 h without clogging with a 71.1% overall yield and a 4-fold improvement in productivity compared to its batch equivalent.
Collapse
Affiliation(s)
- György
Nimród Stoffán
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Zsolt Lőrincz
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Éva Pusztai
- Department
of Chemical and Environmental Process Engineering, Faculty of Chemical
Technology and Biotechnology, Budapest University
of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Lajos Madarász
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Kornélia Tacsi
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - György Marosi
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Hajnalka Pataki
- Department
of Organic Chemistry and Technology, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| |
Collapse
|
2
|
Condensed Phase Membrane Introduction Mass Spectrometry: A Direct Alternative to Fully Exploit the Mass Spectrometry Potential in Environmental Sample Analysis. SEPARATIONS 2023. [DOI: 10.3390/separations10020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Membrane introduction mass spectrometry (MIMS) is a direct mass spectrometry technique used to monitor online chemical systems or quickly quantify trace levels of different groups of compounds in complex matrices without extensive sample preparation steps and chromatographic separation. MIMS utilizes a thin, semi-permeable, and selective membrane that directly connects the sample and the mass spectrometer. The analytes in the sample are pre-concentrated by the membrane depending on their physicochemical properties and directly transferred, using different acceptor phases (gas, liquid or vacuum) to the mass spectrometer. Condensed phase (CP) MIMS use a liquid as a medium, extending the range to new applications to less-volatile compounds that are challenging or unsuitable to gas-phase MIMS. It directly allows the rapid quantification of selected compounds in complex matrices, the online monitoring of chemical reactions (in real-time), as well as in situ measurements. CP-MIMS has expanded beyond the measurement of several organic compounds because of the use of different types of liquid acceptor phases, geometries, dimensions, and mass spectrometers. This review surveys advancements of CP-MIMS and its applications to several molecules and matrices over the past 15 years.
Collapse
|
3
|
Process Analytical Technology for the Production of Parenteral Lipid Emulsions According to Good Manufacturing Practices. Processes (Basel) 2022. [DOI: 10.3390/pr10061174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The good manufacturing practices (GMP) and process analytical technology (PAT) initiatives of the US Food and Drug Administration, in conjunction with International Council for Harmonisation (ICH) quality guidelines Q8, Q9, and Q10, ensure that manufacturing processes for parenteral formulations meet the requirements of increasingly strict regulations. This involves the selection of suitable process analytics for process integration and aseptic processing. In this article, we discuss the PAT requirements for the GMP-compliant manufacturing of parenteral lipid emulsions, which can be used for clinical nutrition or for the delivery of lipophilic active ingredients. There are risks associated with the manufacturing processes, including the potential for unstable emulsions and the formation of large droplets that can induce embolisms in the patient. Parenteral emulsions are currently monitored offline using a statistical approach. Inline analytics, supplemented by measurements of zeta potential, could minimize the above risks. Laser scanning technology, ultrasound attenuation spectroscopy, and photo-optical sensors combined with image analysis may prove to be useful PAT methods. In the future, these technologies could lead to better process understanding and control, thus improving production efficiency.
Collapse
|