1
|
Bonner A, Baumann M. Development of a Continuous Flow Baldwin Rearrangement Process and Its Comparison to Traditional Batch Mode. Org Process Res Dev 2024; 28:1567-1575. [PMID: 38783852 PMCID: PMC11110046 DOI: 10.1021/acs.oprd.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 05/25/2024]
Abstract
A new and highly efficient continuous flow process is presented for the synthesis of aziridines via the thermal Baldwin rearrangement. The process was initially explored using traditional batch synthesis techniques but suffered from moderate yields, long reaction times, and moderate diastereoselectivities. Here we demonstrate that the process can be greatly improved upon its transfer to continuous flow, which afforded the aziridine targets in high yields, short reaction times, and consistently high diastereoselectivities, with the high-throughput process rendering multigram quantities of product in short periods of time. In addition, flow processing extended the substrate scope including several examples that had failed in batch mode, thus demonstrating the value of this overlooked entry into valuable aziridine species.
Collapse
Affiliation(s)
- Arlene Bonner
- School
of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland D04 N2E2
| | - Marcus Baumann
- School
of Chemistry, University College Dublin, Science Centre South, Belfield, Dublin 4, Ireland D04 N2E2
| |
Collapse
|
2
|
Li J, Liu T, Singh N, Huang Z, Ding Y, Huang J, Sudarsanam P, Li H. Photocatalytic C-N bond construction toward high-value nitrogenous chemicals. Chem Commun (Camb) 2023; 59:14341-14352. [PMID: 37987689 DOI: 10.1039/d3cc04771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of carbon-nitrogen bonds is vital for producing versatile nitrogenous compounds for the chemical and pharmaceutical industries. Among developed synthetic approaches to nitrogenous chemicals, photocatalysis is particularly prominent and has become one of the emerging fields due to its unique advantages of eco-sustainable characteristics, efficient process integration, no need for high-pressure H2, and tunable synthesis methods for developing advanced photocatalytic materials. Here, the review focuses on potential photocatalytic protocols developed for the construction of robust carbon-nitrogen bonds in discrepant activation environments to produce high-value nitrogenous chemicals. The photocatalytic C-N bond construction strategies and involved reaction mechanisms are elucidated.
Collapse
Affiliation(s)
- Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Tengyu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Zhuochun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Yan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Jinshu Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Putla Sudarsanam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Wang J, Zhang Y, Wang B, Xia Y, Xue F, Jin W, Liu C. Electrooxidative Hofmann Rearrangement of Phthalimides to Access Anthranilate Derivatives. ACS OMEGA 2023; 8:35167-35172. [PMID: 37779964 PMCID: PMC10536198 DOI: 10.1021/acsomega.3c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
A simple and efficient electrooxidative Hofmann rearrangement reaction of phthalimides was developed. Anthranilate derivatives were synthesized in moderate to good yields under green and mild conditions using phthalimides as a rearrangement precursor. This approach not only provides a strategy for synthesizing anthranilates and deuterated anthranilate derivatives with high deuteration efficiency but also realizes efficient conversion at the gram scale. A possible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Jie Wang
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Key
Laboratory of Specialty Agri-Product Quality and Hazard Controlling
Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chenjiang Liu
- Urumqi
Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory
of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang
Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization
of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
4
|
Alfano AI, Pelliccia S, Rossino G, Chianese O, Summa V, Collina S, Brindisi M. Continuous-Flow Technology for Chemical Rearrangements: A Powerful Tool to Generate Pharmaceutically Relevant Compounds. ACS Med Chem Lett 2023; 14:326-337. [PMID: 36923914 PMCID: PMC10009796 DOI: 10.1021/acsmedchemlett.3c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The efficacy, safety, and scale-up of several chemical rearrangements remain unsolved problems due to the associated handling of hazardous, toxic, and pollutant chemicals and high-risk intermediates. For many years batch processes have been considered the only possibility to drive these reactions, but continuous-flow technology has emerged, for both academic laboratories and pharmaceutical companies, as a powerful tool for easy, controlled, and safer chemistry protocols, helping to minimize the formation of side products and increase reaction yields. This Technology Note summarizes recently reported chemical rearrangements using continuous-flow approaches, with a focus on Curtius, Hofmann, and Schmidt reactions. Flow protocols, general advantages and safety aspects, and reaction scope for the generation of both privileged scaffolds and active pharmaceutical ingredients will be showcased.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Orazio Chianese
- Genetic S.p.A., Via Canfora, 64, 84084 Fisciano (Salerno), Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131, Naples, Italy
| |
Collapse
|
5
|
Sharley JS, Gambacorta G, Collado Pérez AM, Ferri EE, Miranda AF, Fernández IF, Quesada JS, Baxendale IR. A simple one-pot oxidation protocol for the synthesis of dehydrohedione from Hedione. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Polterauer D, Roberge DM, Hanselmann P, Littich R, Hone CA, Kappe CO. A continuous flow investigation of sulfonyl chloride synthesis using N-chloroamides: optimization, kinetics and mechanism. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a continuous flow protocol for the synthesis of sulfonyl chlorides from disulfides and thiols, using 1,3-dichloro-5,5-dimethylhydantoin (DCH) as a dual-function reagent for oxidative chlorination.
Collapse
Affiliation(s)
- Dominik Polterauer
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | - Paul Hanselmann
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Ryan Littich
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Christopher A. Hone
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, A-8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|