1
|
Tagliabue B, Heckmann CM, Villa R, Grisel S, Berrin JG, Lafond M, Ribeaucourt D, Paul CE. Enantioselective synthesis of ( R)-citronellal from geraniol with an immobilised copper alcohol oxidase and ene reductase. REACT CHEM ENG 2025; 10:1320-1325. [PMID: 40093767 PMCID: PMC11908116 DOI: 10.1039/d5re00034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
(R)-Citronellal is one of the key chiral intermediates in the synthesis of the isomer (-)-menthol, one of the most commercialised terpenoid flavours worldwide. Enzymatic approaches could represent a less energy-demanding alternative for its synthesis, such as a previously reported bienzymatic cascade starting from inexpensive, commercially available geraniol. A copper radical oxidase (CgrAlcOx) followed by a flavin-dependent ene reductase (OYE2) were used to obtain (R)-citronellal. Here, we used a metal-affinity immobilisation strategy on the His-tagged enzymes for the cascade and studied enzyme recovery and reusability as well as increased solvent tolerance. After screening a panel of resins for enzyme immobilisation and water-immiscible co-solvents, we successfully obtained 95% conversion to (R)-citronellal with 96.9% enantiomeric excess (ee) in a concurrent cascade after 7 h of reaction time, starting from 10 mM of geraniol.
Collapse
Affiliation(s)
- Beatrice Tagliabue
- Biocatalysis Section, Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Christian M Heckmann
- Biocatalysis Section, Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Rocio Villa
- Biocatalysis Section, Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| | - Sacha Grisel
- INRAE, Aix Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques Marseille France
- INRAE, Aix Marseille Univ 3PE Platform Marseille France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques Marseille France
| | - Mickael Lafond
- INRAE, Aix Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques Marseille France
| | - David Ribeaucourt
- INRAE, Aix Marseille Univ, BBF, Biodiversité et Biotechnologie Fongiques Marseille France
| | - Caroline E Paul
- Biocatalysis Section, Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629HZ Delft The Netherlands
| |
Collapse
|
2
|
Patti S, Magrini Alunno I, Pedroni S, Riva S, Ferrandi EE, Monti D. Advances and Challenges in the Development of Immobilized Enzymes for Batch and Flow Biocatalyzed Processes. CHEMSUSCHEM 2025; 18:e202402007. [PMID: 39585729 PMCID: PMC11997919 DOI: 10.1002/cssc.202402007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The development of immobilized enzymes both for batch and continuous flow biocatalytic processes has gained significant traction in recent years, driven by the need for cost-effective and sustainable production methods in the fine chemicals and pharmaceutical industries. Enzyme immobilization not only enables the recycling of biocatalysts but also streamlines downstream processing, significantly reducing the cost and environmental impact of biotransformations. This review explores recent advancements in enzyme immobilization techniques, covering both carrier-free methods, entrapment strategies and support-based approaches. At this regard, the selection of suitable materials for enzyme immobilization is examined, highlighting the advantages and challenges associated with inorganic, natural, and synthetic organic carriers. Novel opportunities coming from innovative binding strategies, such as genetic fusion technologies, for the preparation of heterogeneous biocatalysts with enhanced activity and stability will be discussed as well. This review underscores the need for ongoing research to address current limitations and optimize immobilization strategies for industrial applications.
Collapse
Affiliation(s)
- Stefania Patti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
- Department of Pharmaceutical SciencesUniversity ofMilanVia Mangiagalli 2520133MilanoItaly
| | - Ilaria Magrini Alunno
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sara Pedroni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| |
Collapse
|
3
|
Patil PD, Gargate N, Dongarsane K, Jagtap H, Phirke AN, Tiwari MS, Nadar SS. Revolutionizing biocatalysis: A review on innovative design and applications of enzyme-immobilized microfluidic devices. Int J Biol Macromol 2024; 281:136193. [PMID: 39362440 DOI: 10.1016/j.ijbiomac.2024.136193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Integrating microfluidic devices and enzymatic processes in biocatalysis is a rapidly advancing field with promising applications. This review explores various facets, including applications, scalability, techno-commercial implications, and environmental consequences. Enzyme-embedded microfluidic devices offer advantages such as compact dimensions, rapid heat transfer, and minimal reagent consumption, especially in pharmaceutical optically pure compound synthesis. Addressing scalability challenges involves strategies for uniform flow distribution and consistent residence time. Incorporation with downstream processing and biocatalytic reactions makes the overall process environmentally friendly. The review navigates challenges related to reaction kinetics, cofactor recycling, and techno-commercial aspects, highlighting cost-effectiveness, safety enhancements, and reduced energy consumption. The potential for automation and commercial-grade infrastructure is discussed, considering initial investments and long-term savings. The incorporation of machine learning in enzyme-embedded microfluidic devices advocates a blend of experimental and in-silico methods for optimization. This comprehensive review examines the advancements and challenges associated with these devices, focusing on their integration with enzyme immobilization techniques, the optimization of process parameters, and the techno-commercial considerations crucial for their widespread implementation. Furthermore, this review offers novel insights into strategies for overcoming limitations such as design complexities, laminar flow challenges, enzyme loading optimization, catalyst fouling, and multi-enzyme immobilization, highlighting the potential for sustainable and efficient enzymatic processes in various industries.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Niharika Gargate
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Khushi Dongarsane
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Hrishikesh Jagtap
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416 234, India
| | - Ajay N Phirke
- Department of Basic Science & Humanities, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Manishkumar S Tiwari
- Department of Data Science, Mukesh Patel School of Technology Management & Engineering, SVKM's NMIMS, Mumbai, Maharashtra 400056, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
4
|
López IL, Sánchez-Costa M, Orrego AH, Zeballos N, Roura Padrosa D, López-Gallego F. Microtiter Plate Immobilization Screening for Prototyping Heterogeneous Enzyme Cascades. Angew Chem Int Ed Engl 2024; 63:e202407411. [PMID: 39037386 DOI: 10.1002/anie.202407411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/23/2024]
Abstract
Immobilization is a key enabling technology in applied biocatalysis that facilitates the separation, recovery, and reuse of heterogeneous biocatalysts. However, finding a consensus immobilization protocol for several enzymes forming a multi-enzyme system is extremely difficult and relies on a combinatorial trial-and-error approach. Herein, we describe a protocol in which 17 different carriers functionalized with different reactive groups are tested in a 96-well microtiter plate to screen up to 21 immobilization protocols for up to 18 enzymes. This screening includes an activity and stability assay to select the optimal immobilization chemistry to achieve the most active and stable heterogeneous biocatalysts. The information retrieved from the screening can be rationalized using a Python-based application CapiPy. Finally, through scoring the screening results, we find the consensus immobilization protocol to assemble an immobilized four-enzyme system to transform vinyl acetate into (S)-3-hydroxybutyric acid. This methodology opens a path to speed up the prototyping of immobilized multi-enzyme pathways for chemical manufacturing.
Collapse
Affiliation(s)
- Idania L López
- Heterogeneous Biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque, Research and Technology Alliance (BRTA), Paseo de Miramón, 182., 20014, Donostia-San Sebastián, Spain
| | - Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque, Research and Technology Alliance (BRTA), Paseo de Miramón, 182., 20014, Donostia-San Sebastián, Spain
| | - Alejandro H Orrego
- Heterogeneous Biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque, Research and Technology Alliance (BRTA), Paseo de Miramón, 182., 20014, Donostia-San Sebastián, Spain
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque, Research and Technology Alliance (BRTA), Paseo de Miramón, 182., 20014, Donostia-San Sebastián, Spain
| | | | - Fernando López-Gallego
- Heterogeneous Biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque, Research and Technology Alliance (BRTA), Paseo de Miramón, 182., 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
5
|
De Simone M, Alonso-Cotchico L, Lucas MF, Brissos V, Martins LO. Distal mutations enhance efficiency of free and immobilized NOV1 dioxygenase for vanillin synthesis. J Biotechnol 2024; 391:92-98. [PMID: 38880386 DOI: 10.1016/j.jbiotec.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Protein engineering is crucial to improve enzymes' efficiency and robustness for industrial biocatalysis. NOV1 is a bacterial dioxygenase that holds biotechnological potential by catalyzing the one-step oxidation of the lignin-derived isoeugenol into vanillin, a popular flavoring agent used in food, cleaning products, cosmetics and pharmaceuticals. This study aims to enhance NOV1 activity and operational stability through the identification of distal hotspots, located at more than 9 Å from the active site using Zymspot, a tool that predicts advantageous distant mutations, streamlining protein engineering. A total of 41 variants were constructed using site-directed mutagenesis and the six most active enzyme variants were then recombined. Two variants, with two and three mutations, showed nearly a 10-fold increase in activity and up to 40-fold higher operational stability than the wild-type. Furthermore, these variants show 90-100 % immobilization efficiency in metal affinity resins, compared to approximately 60 % for the wild-type. In bioconversions where 50 mM of isoeugenol was added stepwise over 24-h cycles, the 1D2 variant produced approximately 144 mM of vanillin after six reaction cycles, corresponding to around 22 mg, indicating a 35 % molar conversion yield. This output was around 2.5 times higher than that obtained using the wild-type. Our findings highlight the efficacy of distal protein engineering in enhancing enzyme functions like activity, stability, and metal binding selectivity, thereby fulfilling the criteria for industrial biocatalysts. This study provides a novel approach to enzyme optimization that could have significant implications for various biotechnological applications.
Collapse
Affiliation(s)
- Mario De Simone
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | | | | | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal
| | - Lígia O Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, Oeiras 2780-157, Portugal.
| |
Collapse
|
6
|
Bhattacharjee N, Alonso-Cotchico L, Lucas MF. Enzyme immobilization studied through molecular dynamic simulations. Front Bioeng Biotechnol 2023; 11:1200293. [PMID: 37362217 PMCID: PMC10285225 DOI: 10.3389/fbioe.2023.1200293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
In recent years, simulations have been used to great advantage to understand the structural and dynamic aspects of distinct enzyme immobilization strategies, as experimental techniques have limitations in establishing their impact at the molecular level. In this review, we discuss how molecular dynamic simulations have been employed to characterize the surface phenomenon in the enzyme immobilization procedure, in an attempt to decipher its impact on the enzyme features, such as activity and stability. In particular, computational studies on the immobilization of enzymes using i) nanoparticles, ii) self-assembled monolayers, iii) graphene and carbon nanotubes, and iv) other surfaces are covered. Importantly, this thorough literature survey reveals that, while simulations have been primarily performed to rationalize the molecular aspects of the immobilization event, their use to predict adequate protocols that can control its impact on the enzyme properties is, up to date, mostly missing.
Collapse
|
7
|
Cohen B, Lehnherr D, Sezen-Edmonds M, Forstater JH, Frederick MO, Deng L, Ferretti AC, Harper K, Diwan M. Emerging Reaction Technologies in Pharmaceutical Development: Challenges and Opportunities in Electrochemistry, Photochemistry, and Biocatalysis. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Bordewick S, Berger RG, Ersoy F. Co-Immobilization of RizA Variants with Acetate Kinase for the Production of Bioactive Arginyl Dipeptides. Molecules 2022; 27:molecules27144352. [PMID: 35889224 PMCID: PMC9321006 DOI: 10.3390/molecules27144352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
The biocatalytic system comprised of RizA and acetate kinase (AckA) combines the specific synthesis of bioactive arginyl dipeptides with efficient ATP regeneration. Immobilization of this coupled enzyme system was performed and characterized in terms of activity, specificity and reusability of the immobilisates. Co-immobilization of RizA and AckA into a single immobilisate conferred no disadvantage in comparison to immobilization of only RizA, and a small addition of AckA (20:1) was sufficient for ATP regeneration. New variants of RizA were constructed by combining mutations to yield variants with increased biocatalytic activity and specificity. A selection of RizA variants were co-immobilized with AckA and used for the production of the salt-taste enhancers Arg-Ser and Arg-Ala and the antihypertensive Arg-Phe. The best variants yielded final dipeptide concentrations of 11.3 mM Arg-Ser (T81F_A158S) and 11.8 mM Arg-Phe (K83F_S156A), the latter of which represents a five-fold increase in comparison to the wild-type enzyme. T81F_A158S retained more than 50% activity for over 96 h and K83F_S156A for over 72 h. This study provides the first example of the successful co-immobilization of an l-amino acid ligase with an ATP-regenerating enzyme and paves the way towards a bioprocess for the production of bioactive dipeptides.
Collapse
|