1
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
2
|
Thorpe MP, Smith AN, Crocker MS, Johnston JN. Resolving Bromonitromethane Sourcing by Synthesis: Preparation at the Decagram Scale. J Org Chem 2022; 87:5451-5455. [PMID: 35364809 PMCID: PMC9109156 DOI: 10.1021/acs.joc.2c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accessibility of bromonitromethane has declined in recent years, limiting its viability as a reagent for chemical synthesis. The reinvestigation and optimization of a variety of preparations, and the development of safe operating principles, are described. The reproducible protocol described here leverages the effectiveness of hydroxide for nitromethane bromination while respecting its incompatibility with the product it forms. This careful balance was achieved at scales up to 56 g, resulting in a reproducible procedure that provides straightforward, sustainable, and affordable access to this critical reagent.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Abigail N Smith
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael S Crocker
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
3
|
Mu J, Liang M, Huang H, Meng J, Xu L, Song Z, Wu M, Miao Z, Zhuo S, Zhou J. Experimental and theoretical study of ZrMo-KIT-6 solid acid catalyst with abundant Brønsted acid sites. RSC Adv 2022; 12:9310-9322. [PMID: 35424842 PMCID: PMC8985161 DOI: 10.1039/d2ra00586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022] Open
Abstract
Given their excellent reusability and environmental friendliness, solid acid catalysts have drawn considerable attention in acid-catalyzed reactions. However, the rational design and synthesis of solid acid catalysts with abundant Brønsted acid sites remains a challenge. In this paper, KIT-6, Zr-KIT-6, Mo-KIT-6, and ZrMo-KIT-6 solid acid catalysts are designed and synthesized. The textural properties, chemical bonds, and acidic properties of these catalysts are explored. Theoretical calculations are conducted to explore the formation mechanism of Brønsted acid sites. The theoretical trend of acidity is consistent with the experimental result of acidity and further demonstrates that the synergistic effect of Zr and Mo species improves the formation of Brønsted acid sites. The as-obtained ZrMo-KIT-6 solid acid catalysts are employed in Friedel–Crafts benzylation reaction, and the outstanding catalytic performance of the ZrMo-KIT-6 catalyst indicates that it is an excellent Brønsted solid acid catalyst. Synergistic effect of Zr and Mo species in the formation of Brønsted acid sites is investigated by experimental and theoretical study.![]()
Collapse
Affiliation(s)
- Jinglin Mu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Manfen Liang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Hong Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Jian Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Leilei Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology Nanjing 210044 P. R. China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mei Wu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology Huaian 223003 P. R. China
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Shuping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000 P. R. China +86 533 2781664
| |
Collapse
|
4
|
Bing JA, Schley ND, Johnston JN. Fluorine-induced diastereodivergence discovered in an equally rare enantioselective syn-aza-Henry reaction. Chem Sci 2022; 13:2614-2623. [PMID: 35356677 PMCID: PMC8890141 DOI: 10.1039/d1sc05910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
Attention to the aza-Henry reaction, particularly over the past two decades, has resulted in a wide range of effective catalysts for the enantio- and diastereoselective versions, driven by the versatility of the β-amino nitroalkane products as precursors to secondary amines and vic-diamines. Despite this broad effort, syn-diastereoselective variants are exceedingly rare. We have discovered a subset of α-fluoro nitroalkane additions that are characterized by an unusual crossover in diastereoselection, often delivering the products with high selectivities. We report here a rigorous comparative analysis of non-fluorinated and α-fluoro nitroalkanes in their additions to azomethines. Both homogeneous and heterogeneous catalysis were applied to probe the possibility that this phenomenon might be more widely operative in the enantioselective additions of fluorine-substituted carbon nucleophiles. A complete correlation within four categories is described that uncovered a clear trend, while revealing a dramatic and distinct reversal of diastereoselection that would normally go undetected.
Collapse
Affiliation(s)
- Jade A Bing
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| |
Collapse
|
5
|
Struble TJ, Smajlagic I, Foy H, Dudding T, Johnston JN. DFT-Based Stereochemical Rationales for the Bifunctional Brønsted Acid/Base-Catalyzed Diastereodivergent and Enantioselective aza-Henry Reactions of α-Nitro Esters. J Org Chem 2021; 86:15606-15617. [PMID: 34669416 DOI: 10.1021/acs.joc.1c02112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A pair of chiral bis(amidine) [BAM] proton complexes provide reagent (catalyst)-controlled, highly diastereo- and enantioselective direct aza-Henry reactions leading to α-alkyl-substituted α,β-diamino esters. A C2-symmetric ligand provides high anti-selectivity, while a nonsymmetric congener exhibits syn-selectivity in this example of diastereodivergent, enantioselective catalysis. A detailed computational analysis is reported for the first time, one that supports distinct models for selectivity resulting from the more hindered binding cavity of the C1-symmetric ligand. Binding in this congested pocket accommodates four hydrogen bond contacts among ligands and substrates, ultimately favoring a pre-syn arrangement highlighted by pyridinium-azomethine activation and quinolinium-nitronate activation. The complementary transition states reveal a wide range of alternatives. Comparing the C1- and C2-symmetric catalysts highlights distinct electrophile binding orientations despite their common hydrogen bond donor-acceptor features. Among the factors driving unusual high syn-diastereoselection are favorable dispersion forces that leverage the anthracenyl substituent of the C1-symmetric ligand.
Collapse
Affiliation(s)
- Thomas J Struble
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ivor Smajlagic
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hayden Foy
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Convenient preparation of arylnitromethanes by oxidation of benzaldoximes with urea hydrogen peroxide. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yadav MB, Jeong YT. A one-pot ring-closure and ring-opening sequence for the cascade synthesis of dihydrofurofurans and functionalized furans. Org Biomol Chem 2021; 19:7409-7419. [PMID: 34397077 DOI: 10.1039/d1ob01300a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple novel ring-closure and ring-opening pathway using an organo-base system for the synthesis of highly substituted dihydrofurofuran and furan frameworks via a triethylamine-catalyzed one-pot three-component reaction. The protocol involved a Knoevenagel and Michael adduct via Paal-Knorr cyclization with aromatic/aliphatic glyoxal and 2-cyanoacetophenone under mild and heating conditions with excellent yields through a simple filtration method. The merits of this methodology, including the use of easily available feedstocks and an inexpensive catalyst, Gram-scale synthesis, wide functional group tolerance, an open-air reaction setup, and no need for workup and column-chromatography procedures, make the developed methodology a practical way to access dihydrofurofurans and functionalized furans.
Collapse
Affiliation(s)
- Maruti B Yadav
- Department of Image Science and Engineering, Pukyong National University, Busan 608-737, Republic of Korea.
| | | |
Collapse
|
8
|
Puglisi A, Rossi S. Stereoselective organocatalysis and flow chemistry. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2018-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Organic synthesis has traditionally been performed in batch. Continuous-flow chemistry was recently rediscovered as an enabling technology to be applied to the synthesis of organic molecules. Organocatalysis is a well-established methodology, especially for the preparation of enantioenriched compounds. In this chapter we discuss the use of chiral organocatalysts in continuous flow. After the classification of the different types of catalytic reactors, in Section 2, each class will be discussed with the most recent and significant examples reported in the literature. In Section 3 we discuss homogeneous stereoselective reactions in flow, with a look at the stereoselective organophotoredox transformations in flow. This research topic is emerging as one of the most powerful method to prepare enantioenriched products with structures that would otherwise be challenging to make. Section 4 describes the use of supported organocatalysts in flow chemistry. Part of the discussion will be devoted to the choice of the support. Examples of packed-bed, monolithic and inner-wall functionalized reactors will be introduced and discussed. We hope to give an overview of the potentialities of the combination of (supported) chiral organocatalysts and flow chemistry.
Collapse
Affiliation(s)
- Alessandra Puglisi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| | - Sergio Rossi
- Dipartimento di Chimica , Università degli Studi di Milano , via Golgi 19 , Milano , 20133 Italy
| |
Collapse
|
9
|
Faisca Phillips AM, Guedes da Silva MFC, Pombeiro AJL. The Stereoselective Nitro-Mannich Reaction in the Synthesis of Active Pharmaceutical Ingredients and Other Biologically Active Compounds. Front Chem 2020; 8:30. [PMID: 32047742 PMCID: PMC6997535 DOI: 10.3389/fchem.2020.00030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
The nitro-Mannich (aza-Henry) reaction, in which a nitroalkane and an imine react to form a β-nitroamine, is a versatile tool for target-oriented synthesis. Although the first stereoselective reaction was developed only 20 years ago, and enantioselective and diastereoselective versions for the synthesis of non-racemic compounds soon after, there are nowadays a variety of reliable methods which can be used for the synthesis of APIs and other biologically active substances. Hence many anticancer drugs, antivirals, antimicrobials, enzyme inhibitors and many more substances, containing C-N bonds, have been synthesized using this reaction. Several transition metal complexes and organocatalysts were shown to be compatible with the presence of a wide range of functional groups in these molecules, and very high levels of asymmetric induction have been achieved in some cases. The reaction has also been applied in cascade processes. The structural diversity of the products, ranging from simple heterocycles or azabicycles to complex alkaloids, iminosugars, amino acids or diamino acids and phosphonates, shows the versatility of the nitro-Mannich reaction and its potential for future developments.
Collapse
Affiliation(s)
| | | | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Marčeková M, Gerža P, Šoral M, Moncol J, Berkeš D, Kolarovič A, Jakubec P. Crystallization Does It All: An Alternative Strategy for Stereoselective Aza-Henry Reaction. Org Lett 2019; 21:4580-4584. [PMID: 31184186 DOI: 10.1021/acs.orglett.9b01489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient and experimentally straightforward method for the stereoselective synthesis of a variety of β-nitro-α-amino carboxylic acids via aza-Henry (nitro-Mannich) reaction of aldimines is disclosed, yielding either anti- or a rarely reported syn-configuration. The reaction operates directly on free glyoxylic acid and generates imine species in situ. Crystallization-controlled diastereoselectivity enables isolation of the target compounds in high enantio- and diastereomeric purities by a simple filtration.
Collapse
Affiliation(s)
- Michaela Marčeková
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| | - Peter Gerža
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| | - Michal Šoral
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| | - Ján Moncol
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| | - Dušan Berkeš
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| | - Andrej Kolarovič
- Department of Chemistry, Faculty of Education , Trnava University , Priemyselná 4 , 918 43 Trnava , Slovakia
| | - Pavol Jakubec
- Faculty of Chemical and Food Technology , Slovak University of Technology , Radlinského 9 , 812 37 Bratislava , Slovakia
| |
Collapse
|
11
|
Burcham CL, Florence AJ, Johnson MD. Continuous Manufacturing in Pharmaceutical Process Development and Manufacturing. Annu Rev Chem Biomol Eng 2019; 9:253-281. [PMID: 29879381 DOI: 10.1146/annurev-chembioeng-060817-084355] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.
Collapse
Affiliation(s)
- Christopher L Burcham
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Research Laboratory, Indianapolis, Indiana 48525, USA; ,
| | - Alastair J Florence
- EPSRC Future CMAC Hub, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G11XQ United Kingdom;
| | - Martin D Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Lilly Research Laboratory, Indianapolis, Indiana 48525, USA; ,
| |
Collapse
|
12
|
Vishe M, Johnston JN. The inverted ketene synthon: a double umpolung approach to enantioselective β 2,3-amino amide synthesis. Chem Sci 2019; 10:1138-1143. [PMID: 30774911 PMCID: PMC6349014 DOI: 10.1039/c8sc04330b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/11/2018] [Indexed: 12/29/2022] Open
Abstract
A stereocontrolled synthesis of β2,3-amino amides is reported. Innovation is encapsulated by the first use of nitroalkenes to achieve double umpolung in enantioselective β-amino amide synthesis. Step economy is also fulfilled by the use of Umpolung Amide Synthesis (UmAS) in the second step, delivering the amide product without intermediacy of a carboxylic acid or activated derivative. Molybdenum oxide-mediated hydride reduction provides the anti-β2,3-amino amide with high selectivity.
Collapse
Affiliation(s)
- Mahesh Vishe
- Department of Chemistry , Vanderbilt Institute of Chemical Biology Vanderbilt University , Nashville , Tennessee 37235 , USA .
| | - Jeffrey N Johnston
- Department of Chemistry , Vanderbilt Institute of Chemical Biology Vanderbilt University , Nashville , Tennessee 37235 , USA .
| |
Collapse
|
13
|
Marcantoni E, Palmieri A, Petrini M. Recent synthetic applications of α-amido sulfones as precursors of N-acylimino derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00196d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Amido sulfones can be directly used as N-acylimine or N-acyliminium ion precursors in several synthetic processes aimed at the preparation of nitrogen containing compounds. This review collects the most relevant and practical utilizations of α-amido sulfones appeared in the literature after 2005.
Collapse
Affiliation(s)
- Enrico Marcantoni
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Alessandro Palmieri
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| | - Marino Petrini
- School of Science and Technology
- Chemistry Division
- University of Camerino
- 1 I-62032 Camerino
- Italy
| |
Collapse
|
14
|
Nieves-Remacha MJ, Torres M, Ruiz-Abad M, Rincón JA, Cumming GR, Garcia-Losada P. Scale-up of N-alkylation reaction using phase-transfer catalysis with integrated separation in flow. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00203g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scaling-up phase-transfer catalysis in flow.
Collapse
Affiliation(s)
| | - Myriam Torres
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - María Ruiz-Abad
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Graham R. Cumming
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| | - Pablo Garcia-Losada
- Centro de Investigación Lilly S.A
- Avda. de la Industria
- 30, 28108 Alcobendas
- Spain
| |
Collapse
|
15
|
Tsukanov SV, Johnson MD, May SA, Kolis SP, Yates MH, Johnston JN. Continuous Platform to Generate Nitroalkanes On-Demand (in situ) using Peracetic Acid-Mediated Oxidation in a PFA Pipes-in-Series Reactor. Org Process Res Dev 2018; 22:971-977. [PMID: 30906182 DOI: 10.1021/acs.oprd.8b00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic utility of the aza-Henry reaction can be diminished on scale by potential hazards associated with the use of peracid to prepare nitroalkane substrates, and the nitroalkanes themselves. In response, a continuous and scalable chemistry platform to prepare aliphatic nitroalkanes on-demand is reported, using the oxidation of oximes with peracetic acid and direct reaction of the nitroalkane intermediate in an aza-Henry reaction. A uniquely designed pipes-in-series plug flow tube reactor addresses a range of process challenges including stability and safe handling of peroxides and nitroalkanes. The subsequent continuous extraction generates a solution of purified nitroalkane which can be directly used in the following enantioselective aza-Henry chemistry to furnish valuable chiral diamine precursors in high selectivity, thus, completely avoiding isolation of potentially unsafe low molecular weight nitroalkane intermediate. A continuous campaign (16 h) established that these conditions were effective in processing 100 g of the oxime and furnishing 1.4 L of nitroalkane solution.
Collapse
Affiliation(s)
- Sergey V Tsukanov
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, Unites States.,Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Martin D Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, Unites States
| | - Scott A May
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, Unites States
| | - Stanley P Kolis
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, Unites States
| | - Matthew H Yates
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, Unites States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
McMullen JP, Marton CH, Sherry BD, Spencer G, Kukura J, Eyke NS. Development and Scale-Up of a Continuous Reaction for Production of an Active Pharmaceutical Ingredient Intermediate. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jonathan P. McMullen
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Christopher H. Marton
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Benjamin D. Sherry
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Glenn Spencer
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Joseph Kukura
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Natalie S. Eyke
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
17
|
Xue Y, Wang Y, Cao Z, Zhou J, Chen ZX. Computational insight into the cooperative role of non-covalent interactions in the aza-Henry reaction catalyzed by quinine derivatives: mechanism and enantioselectivity. Org Biomol Chem 2018; 14:9588-9597. [PMID: 27714327 DOI: 10.1039/c6ob01611a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Density functional theory (DFT) calculations were performed to elucidate the mechanism and the origin of the high enantioselectivity of the aza-Henry reaction of isatin-derived N-Boc ketimine catalyzed by a quinine-derived catalyst (QN). The C-C bond formation step is found to be both the rate-determining and the stereo-controlled step. The results revealed the important role of the phenolic OH group in pre-organizing the complex of nitromethane and QN and stabilizing the in situ-generated nitronate and protonated QN. Three possible activation modes for C-C bond formation involving different coordination patterns of catalyst and substrates were studied, and it was found that both the ion pair-hydrogen bonding mode and the Brønsted acid-hydrogen bonding mode are viable, with the latter slightly preferred for the real catalytic system. The calculated enantiomeric excess (ee) favouring the S enantiomer is in good agreement with the experimental result. The high reactivity and enantioselectivity can be ascribed to the cooperative role of the multiple non-covalent interactions, including classical and non-classical H bonding as well as anionπ interactions. These results also highlight the importance of the inclusion of dispersion correction for achieving a reasonable agreement between theory and experiment for the current reaction.
Collapse
Affiliation(s)
- Yunsheng Xue
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. and School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, P. R. China
| | - Yuhui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhongyan Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Zhao-Xu Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
18
|
Nakashima E, Yamamoto H. Process Catalyst Mass Efficiency by Using Proline Tetrazole Column-Flow System. Chemistry 2018; 24:1076-1079. [PMID: 29315878 DOI: 10.1002/chem.201705982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/05/2022]
Abstract
Generally, organocatalysts are not decomposed during chemical transformation, which is different from traditional metal catalysts. To improve catalytic processes efficiency, various studies have been applied to flow synthesis for organocatalysis. Furthermore, many immobilized organocatalysts have been used for heterogeneous flow synthesis, which requires huge amounts of immobilized catalyst and requires several steps to prepare. We took advantage of organocatalysts with low-polarity organic solvent and developed a flow system through a packed-bed column with simply proline tetrazole (5-(2-pyrrolidinyl)-1H-tetrazole) for heterogeneous organocatalytic synthesis. Under ambient temperature, this heterogeneous organocatalyst continuous flow-column system with ketones as a donor provides aldol, Mannich, and o-nitroso aldol reactions in up to quantitative yields with excellent enantio- and chemoselectivity values. Our heterogeneous-flow synthesis provides extremely low process catalyst mass efficiency and continuous production without changing the packed-bed catalyst column.
Collapse
Affiliation(s)
- Erika Nakashima
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
19
|
Cole KP, Johnson MD. Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds. Expert Rev Clin Pharmacol 2017; 11:5-13. [DOI: 10.1080/17512433.2018.1413936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevin P. Cole
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, USA
| | - Martin D. Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
20
|
Cole KP, Campbell BM, Forst MB, McClary Groh J, Hess M, Johnson MD, Miller RD, Mitchell D, Polster CS, Reizman BJ, Rosemeyer M. An Automated Intermittent Flow Approach to Continuous Suzuki Coupling. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kevin P. Cole
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | - Mindy B. Forst
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | - Molly Hess
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | | | - David Mitchell
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | | | | | - Morgan Rosemeyer
- D&M Continuous Solutions, LLC, Greenwood, Indiana 46143, United States
| |
Collapse
|