1
|
Haque MA, Hamilton ST, Feric TG, Park AHA, Dadmun MD. Elucidating the assembly of nanoparticle organic hybrid materials (NOHMs) near an electrode interface with varying potential using neutron reflectivity. NANOSCALE 2024; 16:8521-8532. [PMID: 38592848 DOI: 10.1039/d3nr06621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A critical concern regarding electrolyte formulation in an electrochemical environment is the impact of the interaction of the multiple components (i.e., supporting electrolyte or additive) with the electrode surface. Recently, liquid-like neat Nanoparticle Organic Hybrid Materials (NOHMs) have been considered as an electrolyte component to improve the transport of redox-active species to the electrode surface. However, the structure and assembly of the NOHMs near the electrode surface is unknown and could significantly impact the electrode-electrolyte interface. Hence, we have investigated the depth profile of polyetheramine (HPE) polymer and NOHM-I-HPE (nanoparticles with ionically bonded HPE polymer) in deuterated water (D2O) in the presence of two different salts (KHCO3 and ZnCl2) near two different electrode surfaces using neutron reflectometry. Moreover, the depth profile of the NOHM-I-HPE near the electrode surface in a potential has also been studied with in situ reflectivity experiments. Our results indicate that a change in the chemical structure/hydrophilicity of the electrode surface does not significantly impact the ordering of HPE polymer or NOHM-I-HPE near the surface. This study also indicates that the NOHM-I-HPE particles form a clear layer near the electrode surface immediately above an adsorbed layer of free polymer on the electrode surface. The addition of salt does not impact the layering of NOHM-I-HPE, though it does alter the conformation of the polymer grafted to the nanoparticle surface and free polymer sequestered near the surface. Finally, the application of negative potential results in an increased amount of free polymer near the electrode surface. Correlating the depth profile of free polymer and NOHM-I-HPE particles with the electrochemical performance indicates that this assembly of free polymer near the electrode surface in NOHM-I-HPE solutions contributes to the higher current density of the system. Therefore, this holistic study offers insight into the importance of the assembly of NOHM-I-HPE electrolyte and free polymer near the electrode surface in an electrochemical milieu on its performance.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Sara T Hamilton
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Tony G Feric
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Ah-Hyung Alissa Park
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
- Lenfest Center for Sustainable Energy, The Earth Institute, Columbia University, USA
| | - Mark D Dadmun
- Department of Chemistry, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Diaz-Baca JA, Salaghi A, Fatehi P. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant. Biomacromolecules 2023; 24:1400-1416. [PMID: 36802502 DOI: 10.1021/acs.biomac.2c01437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This paper reports the polymerization of tall oil lignin (TOL), starch, and 2-methyl-2-propene-1-sulfonic acid sodium salt (MPSA), a sulfonate-containing monomer, in a three-component system to generate flocculants for colloidal systems. By utilizing the advanced 1H, COSY, HSQC, HSQC-TOCSY, and HMBC NMR techniques, it was confirmed that the phenolic substructures of TOL and the anhydroglucose unit of starch were covalently polymerized by the monomer to generate the three-block copolymer. The molecular weight, radius of gyration, and shape factor of the copolymers were fundamentally correlated to the structure of lignin and starch, as well as the polymerization outcomes. The deposition behavior of the copolymer, studied by a quartz crystal microbalance with dissipation (QCM-D) analysis, revealed that the copolymer with a larger molecular weight (ALS-5) deposited more and generated more compact adlayer than the copolymer with a smaller molecular weight on a solid surface. Owing to its higher charge density, molecular weight, and extended coil-like structure, ALS-5 produced larger flocs with faster sedimentation in the colloidal systems, regardless of the extent of agitation and gravitational force. The results of this work provide a new approach to preparing a lignin-starch polymer, i.e., a sustainable biomacromolecule with excellent flocculation performance in colloidal systems.
Collapse
Affiliation(s)
- Jonathan A Diaz-Baca
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Ayyoub Salaghi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute and Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B SE1, Canada
| |
Collapse
|
3
|
Effects of Mg ions on the structural transformation of calcium carbonate and their implication for the tailor-synthesized carbon mineralization process. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wang Z, Hao M, Li X, Zhang B, Jiao M, Chen BZ. Promising and efficient lignin degradation versatile strategy based on DFT calculations. iScience 2022; 25:103755. [PMID: 35141502 PMCID: PMC8810403 DOI: 10.1016/j.isci.2022.103755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
The extraction of higher-value products from lignin degradations under mild conditions is a challenge. Previous research reported efficient two-step oxidation and reduction strategies for lignin degradation, which has great significance to lignin degradation. In this paper, the mechanism about the C-O bond cleavage of lignin with and without Cα oxidations has been studied systematically. Our calculation results show that the degradation of anionized lignin with Cα oxidations is kinetically and thermodynamically feasible. In addition, the calculations predict that the anionized lignin compounds without Cα oxidation also could be degraded under mild conditions. Moreover, we propose special lignin catalytic degradation systems containing the characteristic structure of "double hydrogen bonds." The double hydrogen bonds structure could further decrease the energy barriers of the C-O bond cleavage reaction. This provides a versatile strategy to design novel lignin degradation.
Collapse
Affiliation(s)
- Zichen Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Xiaoyu Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingyang Jiao
- Shandong Energy Institute, Qingdao 266101, Shandong, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Feric TG, Hamilton ST, Cantillo NM, Imel AE, Zawodzinski TA, Park AHA. Dynamic Mixing Behaviors of Ionically Tethered Polymer Canopy of Nanoscale Hybrid Materials in Fluids of Varying Physical and Chemical Properties. J Phys Chem B 2021; 125:9223-9234. [PMID: 34370476 DOI: 10.1021/acs.jpcb.1c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An emerging area of sustainable energy and environmental research is focused on the development of novel electrolytes that can increase the solubility of target species and improve subsequent reaction performance. Electrolytes with chemical and structural tunability have allowed for significant advancements in flow batteries and CO2 conversion integrated with CO2 capture. Liquid-like nanoparticle organic hybrid materials (NOHMs) are nanoscale fluids that are composed of inorganic nanocores and an ionically tethered polymeric canopy. NOHMs have been shown to exhibit enhanced conductivity making them promising for electrolyte applications, though they are often challenged by high viscosity in the neat state. In this study, a series of binary mixtures of NOHM-I-HPE with five different secondary fluids, water, chloroform, toluene, acetonitrile, and ethyl acetate, were prepared to reduce the fluid viscosity and investigate the effects of secondary fluid properties (e.g., hydrogen bonding ability, polarity, and molar volume) on their transport behaviors, including viscosity and diffusivity. Our results revealed that the molecular ratio of secondary fluid to the ether groups of Jeffamine M2070 (λSF) was able to describe the effect that secondary fluid has on transport properties. Our findings also suggest that in solution, the Jeffamine M2070 molecules exist in different nanoscale environments, where some are more strongly associated with the nanoparticle surface than others, and the conformation of the polymer canopy was dependent on the secondary fluid. This understanding of the polymer conformation in NOHMs can allow for the better design of an electrolyte capable of capturing and releasing small gaseous or ionic species.
Collapse
Affiliation(s)
| | | | - Nelly M Cantillo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Adam E Imel
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States.,Energy Storage and Membrane Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
6
|
Choi S, Moon S, Park Y. Spectroscopic Investigation of Entropic Canopy-Canopy Interactions of Nanoparticle Organic Hybrid Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9626-9633. [PMID: 32683866 DOI: 10.1021/acs.langmuir.0c01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticle organic hybrid materials (NOHMs) are self-suspended liquid-like nanoparticle-based functional materials consisting of a surface-functionalized inorganic nanocore and oligomeric or polymeric chains. They often exhibit complex intermolecular and intramolecular interactions among their constituents, resulting in versatile physicochemical characteristics that range from glassy solids to solvent-free nanoparticle fluids. A variety of applications involving NOHMs have been investigated thus far, including thermal management fluids, lubricants, magnetic fluids, nanocomposites, electrolytes, water treatment and biomass pretreatment chemicals, and CO2 capture solvents. In particular, NOHMs have recently been recognized as a promising CO2 capture and utilization medium. To capture CO2 more effectively, a variety of specific functional groups of strong chemical affinity to CO2 can be added to the polymeric canopy (enthalpic contribution), and various steric considerations induced by attractive/repulsive interactions among the nanocores and canopies can be introduced (entropic contribution). These occur while maintaining negligible vapor pressure and enhanced thermal stability. Here, we investigated the canopy dynamics of NOHMs with different-sized SiO2 nanocores, aiming to reveal the hidden nature of the entropic interaction occurring in NOHMs. Pulse-field gradient nuclear magnetic resonance spectroscopy (with 1H) was employed to investigate the canopy dynamics of the NOHMs synthesized using 7, 12, and 22 nm SiO2 particles, and these results were compared with those from a ternary mix of all three sizes of SiO2 nanocores. The self-diffusion coefficient and thermal diffusivity were also evaluated.
Collapse
Affiliation(s)
- Soyoung Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seokyoon Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Youngjune Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|