1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Scherkus A, Gudkova A, Čada J, Müller BH, Bystron T, Francke R. Low-Cost, Safe, and Anion-Flexible Method for the Electrosynthesis of Diaryliodonium Salts. J Org Chem 2024; 89:14129-14134. [PMID: 39300781 PMCID: PMC11460726 DOI: 10.1021/acs.joc.4c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
An electrochemical approach toward the synthesis of diaryliodonium salts based on anodic C-I coupling between aryl iodides and arenes is presented. In contrast to previous protocols, our method requires no chemical oxidants, strong acids, or fluorinated solvents. A further advantage is that by use of the appropriate supporting electrolyte, the counterion of choice can be introduced, which is time- and cost-saving as compared to postsynthesis ion exchange. This "anion-flexibility" is particularly interesting when considering the pronounced effect of the counterion on the reactivity of diaryliodonium species in aryl transfer reactions. The scope of our method comprises 24 examples with isolated yields of up to 99%. Scalability was demonstrated by the synthesis on a gram scale. Furthermore, it was shown that the diaryliodonium-containing post-electrolysis solution can be used without further workup as a reactive medium for O-arylation reactions. Finally, a series of para-substituted diaryliodonium compounds was studied using linear sweep voltammetry on a microelectrode and analyzed with respect to the influence of the electronic structure on the redox behavior.
Collapse
Affiliation(s)
- Anton Scherkus
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Aija Gudkova
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jan Čada
- Department
of Inorganic Technology, University of Chemistry
and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Bernd H. Müller
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Tomas Bystron
- Department
of Inorganic Technology, University of Chemistry
and Technology, Prague, Technicka 5, 16628 Prague 6, Czech Republic
| | - Robert Francke
- Leibniz
Institute for Catalysis, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Synthesis of Monofluoromethylarenes: Direct Monofluoromethylation of Diaryliodonium Bromides using Fluorobis(phenylsulfonyl)methane (FBSM). J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Nilova A, Metze B, Stuart DR. Aryl(TMP)iodonium Tosylate Reagents as a Strategic Entry Point to Diverse Aryl Intermediates: Selective Access to Arynes. Org Lett 2021; 23:4813-4817. [PMID: 34032454 DOI: 10.1021/acs.orglett.1c01534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arenes are broadly found motifs in societally important molecules. Access to diverse arene chemical space is critically important, and the ability to do so from common reagents is highly desirable. Aryl(TMP)iodonium tosylates provide one such access point to arene chemical space via diverse aryl intermediates. Here we demonstrate that controlling reaction pathways selectively leads to arynes with a broad scope of arenes and arynophiles (24 examples, 70% average yield) and efficient access to biologically active compounds.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
5
|
Joshi A, De SR. Diaryliodonium Salts in Transition‐Metal‐Catalyzed Chelation‐Induced C(sp
2
/sp
3
)−H Arylations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asha Joshi
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- Dept. of Chemistry National Institute of Technology, Uttarakhand Srinagar-Garhwal Uttarakhand 246174 India
| |
Collapse
|
6
|
Copper-Catalyzed C–H Arylation of Fused-Pyrimidinone Derivatives Using Diaryliodonium Salts. Catalysts 2020. [DOI: 10.3390/catal11010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper-catalyzed Csp2–Csp2 bond forming reactions through C–H activation are still one of the most useful strategies for the diversification of heterocyclic moieties using various coupling partners. A catalytic protocol for the C–H (hetero)arylation of thiazolo[5,4-f]quinazolin-9(8H)-ones and more generally fused-pyrimidinones using catalyst loading of CuI with diaryliodonium triflates as aryl source under microwave irradiation has been disclosed. The selectivity of the transfer of the aryl group was also disclosed in the case of unsymmetrical diaryliodonium salts. Specific phenylation of valuable fused-pyrimidinones including quinazolinone are provided. This strategy enables a rapid access to an array of various (hetero)arylated N-containing polyheteroaromatics as new potential bioactive compounds.
Collapse
|
7
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|
8
|
Mayer RJ, Ofial AR, Mayr H, Legault CY. Lewis Acidity Scale of Diaryliodonium Ions toward Oxygen, Nitrogen, and Halogen Lewis Bases. J Am Chem Soc 2020; 142:5221-5233. [PMID: 32125154 DOI: 10.1021/jacs.9b12998] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Equilibrium constants for the associations of 17 diaryliodonium salts Ar2I+X- with 11 different Lewis bases (halide ions, carboxylates, p-nitrophenolate, amines, and tris(p-anisyl)phosphine) have been investigated by titrations followed by photometric or conductometric methods as well as by isothermal titration calorimetry (ITC) in acetonitrile at 20 °C. The resulting set of equilibrium constants KI covers 6 orders of magnitude and can be expressed by the linear free-energy relationship lg KI = sI LAI + LBI, which characterizes iodonium ions by the Lewis acidity parameter LAI, as well as the iodonium-specific affinities of Lewis bases by the Lewis basicity parameter LBI and the susceptibility sI. Least squares minimization with the definition LAI = 0 for Ph2I+ and sI = 1.00 for the benzoate ion provides Lewis acidities LAI for 17 iodonium ions and Lewis basicities LBI and sI for 10 Lewis bases. The lack of a general correlation between the Lewis basicities LBI (with respect to Ar2I+) and LB (with respect to Ar2CH+) indicates that different factors control the thermodynamics of Lewis adduct formation for iodonium ions and carbenium ions. Analysis of temperature-dependent equilibrium measurements as well as ITC experiments reveal a large entropic contribution to the observed Gibbs reaction energies for the Lewis adduct formations from iodonium ions and Lewis bases originating from solvation effects. The kinetics of the benzoate transfer from the bis(4-dimethylamino)-substituted benzhydryl benzoate Ar2CH-OBz to the phenyl(perfluorophenyl)iodonium ion was found to follow a first-order rate law. The first-order rate constant kobs was not affected by the concentration of Ph(C6F5)I+ indicating that the benzoate release from Ar2CH-OBz proceeds via an unassisted SN1-type mechanism followed by interception of the released benzoate ions by Ph(C6F5)I+ ions.
Collapse
Affiliation(s)
- Robert J Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany
| | - Claude Y Legault
- University of Sherbrooke, Department of Chemistry, Centre in Green Chemistry and Catalysis, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|