1
|
Düker J, Philipp M, Lentner T, Cadge JA, Lavarda JE, Gschwind RM, Sigman MS, Ghosh I, König B. Cross-Coupling Reactions with Nickel, Visible Light, and tert-Butylamine as a Bifunctional Additive. ACS Catal 2025; 15:817-827. [PMID: 39839851 PMCID: PMC11744660 DOI: 10.1021/acscatal.4c07185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing tert-butylamine as a cost-effective bifunctional additive, acting as the base and ligand. This method proves effective for C-O and C-N bond-forming reactions with a diverse array of nucleophiles, including phenols, aliphatic alcohols, anilines, sulfonamides, sulfoximines, and imines. Notably, the protocol demonstrates significant applicability in biomolecule derivatization and facilitates sequential one-pot functionalizations. Spectroscopic investigations revealed the robustness of the dynamic catalytic system, while elucidation of structure-reactivity relationships demonstrated how computed molecular properties of both the nucleophile and electrophile correlated to reaction performance, providing a foundation for effective reaction outcome prediction.
Collapse
Affiliation(s)
- Jonas Düker
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Maximilian Philipp
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Thomas Lentner
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Jamie A. Cadge
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - João E.
A. Lavarda
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Ruth M. Gschwind
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| | - Matthew S. Sigman
- Department
of Chemistry, University of Utah, 315 1400 E, Salt Lake City 84112, Utah, United States
| | - Indrajit Ghosh
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VSB - Technical University of Ostrava, Ostrava-Poruba 708 00, Czech Republic
| | - Burkhard König
- Fakultät
für Chemie und Pharmazie, Universität
Regensburg, Regensburg 93040, Germany
| |
Collapse
|
2
|
Gu JW, Oderinde MS, Li H, Roberts F, Ganley JM, Palkowitz MD. Expedited Aminoglutarimide C-N Cross-Coupling Enabled by High-Throughput Experimentation. J Org Chem 2024; 89:17738-17743. [PMID: 39545828 DOI: 10.1021/acs.joc.4c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A simple protocol for the Buchwald-Hartwig cross-coupling of (hetero)aryl halides with unprotected aminoglutarimide to afford diverse cereblon binding motifs is disclosed. The development of this C-N cross-coupling method was enabled by high-throughput combinatory screening of solvents, bases, temperatures, and ligands. Scope studies revealed generality across various heteroaryl and aryl halides with the reaction proceeding under mild conditions. In comparison, this method demonstrated strategic superiority over previously reported approaches, as evidenced by a significant decrease in step count from known syntheses in the patent literature.
Collapse
Affiliation(s)
- Jacqueline W Gu
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Hui Li
- Spectrix Analytical Services, 410 Sackett Point Road #20, North Haven, Connecticut 06473, United States
| | - Frederick Roberts
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Jacob M Ganley
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| |
Collapse
|
3
|
Raguram ER, Dahl JC, Jensen KF, Buchwald SL. Kinetic Modeling Enables Understanding of Off-Cycle Processes in Pd-Catalyzed Amination of Five-Membered Heteroaryl Halides. J Am Chem Soc 2024; 146:33035-33047. [PMID: 39566015 PMCID: PMC11906019 DOI: 10.1021/jacs.4c10488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The mechanism of Pd-catalyzed amination of five-membered heteroaryl halides was investigated by integrating experimental kinetic analysis with kinetic modeling through predictive testing and likelihood ratio analysis, revealing an atypical productive coupling pathway and multiple off-cycle events. The GPhos-supported Pd catalyst, along with the moderate-strength base NaOTMS, was previously found to promote efficient coupling between five-membered heteroaryl halides and secondary amines. However, slight deviations from the optimal concentration, temperature, and/or solvent resulted in significantly lower yields, contrary to typical reaction optimization trends. We found that the coupling of 4-bromothiazole with piperidine proceeds through an uncommon mechanism in which the NaOTMS base, rather than the amine, binds first to the oxidative addition complex; the resulting OTMS-bound Pd species is the resting state. Formation of the Pd-amido complex via base/amine exchange was identified as the turnover-limiting step, unlike other reported catalyst systems for which reductive elimination is turnover-limiting. We determined that the amine-bound Pd complex, usually an on-cycle intermediate, is instead a reversibly generated off-cycle species, and that base-mediated decomposition of 4-bromothiazole is the primary irreversible catalyst deactivation pathway. Predictive testing and kinetic modeling were key to the identification of these off-cycle processes, providing insight into minor mechanistic pathways that are difficult to observe experimentally. Collectively, this report reveals the unique enabling features of the Pd-GPhos/NaOTMS system, implementing mechanistic insights to improve the yields of particularly challenging coupling reactions. Moreover, these findings highlight the utility of applying predictive tests to kinetic models for the rapid evaluation of mechanistic possibilities in small-molecule catalytic systems.
Collapse
Affiliation(s)
- Elaine Reichert Raguram
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Jakob C Dahl
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Li J, Lin Q, Dungan O, Fu Y, Ren S, Ruccolo S, Moor S, Phillips EM. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D 2/T 2 Gas. J Am Chem Soc 2024; 146:31497-31506. [PMID: 39514417 DOI: 10.1021/jacs.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogen isotopically labeled compounds have extensive utility across diverse domains, especially in drug discovery and development. However, synthesis of the labeled compounds with exclusive site selectivity and/or high isotope incorporation is challenging. One widely employed method is heterogeneous palladium(0)-catalyzed (such as Pd/C) dehalogenative deuteration and tritiation with D2/T2 gas. While commonly used, the method faces two long-standing challenges related to insufficient isotope incorporation and functional group tolerance, particularly with aryl bromides and chlorides. These long-standing issues pose a substantial obstacle in the synthesis of deuterated drug molecules and high-specific-activity tritium tracers. Herein, we present a novel palladium catalytic system using Zn(OAc)2 as an additive, enabling novel homogenous dehalogenative deuteration/tritiation using D2/T2 gas. Under mild reaction conditions, a wide range of drug-like aryl halides and pseudohalides undergo selective deuteration with complete isotope incorporation. The reaction displays excellent compatibility with diverse functional groups, including multiple bonds and O/N-benzyl, and cyano groups, which are frequently problematic in the Pd/C reactions. Furthermore, this method was successfully applied to the tritiation of four halogenated pharmaceutically relevant molecules, resulting in predictable high specific activity per halogen atom (26.5-27.7 Ci/mmol). Notably, the developed system allows gram-scale preparation of a deuterium-containing intermediate, a crucial step in synthesizing a deuterium-labeled drug molecule. A key intermediate, Pd(Ar)OAc, is proposed to activate hydrogen gas during dehalogenative deuteration and tritiation, and Zn(OAc)2 plays an essential role in inhibiting Pd poisoning by halides.
Collapse
Affiliation(s)
- Jingwei Li
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qiao Lin
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Otto Dungan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yue Fu
- Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sarah Moor
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Fyfe C, Barrington H, Gordon CM, Reid M. A Computer Vision Approach toward Verifying CFD Models of Stirred Tank Reactors. Org Process Res Dev 2024; 28:3661-3673. [PMID: 39323895 PMCID: PMC11421076 DOI: 10.1021/acs.oprd.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Mixing is one of the most important nonchemical considerations in the design of scalable processes. While noninvasive imaging approaches to deliver a quantifiable understanding of mixing dynamics are well-known, the use of imaging to verify computational fluid dynamics (CFD) models remains in its infancy. Herein, we use colorimetric reactions and our kinetic imaging software, Kineticolor, to explore (i) the correlation of imaging kinetics with pH probe measurements, (ii) feed point sensitivity for Villermaux-Dushman-type competing parallel reactions, and (iii) the use of experimental imaging kinetic data to qualitatively assess CFD models. We report further evidence that the influences of the stirring rate, baffle presence, and feed position on mixing in a tank reactor can be informatively captured with a camcorder and help experimentally verify CFD models. Overall, this work advances scarce little precedent in demonstrating the use of computer vision to verify CFD models of fluid flow in tank reactors.
Collapse
Affiliation(s)
- Calum Fyfe
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Henry Barrington
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Charles M. Gordon
- Scale-up
Systems Ltd, 23 Shelbourne
Road, Dublin 4 D04 PY68, Ireland
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
6
|
Charboneau DJ, Huang H, Barth EL, Deziel AP, Germe CC, Hazari N, Jia X, Kim S, Nahiyan S, Birriel-Rodriguez L, Uehling MR. Homogeneous Organic Reductant Based on 4,4'- tBu 2-2,2'-Bipyridine for Cross-Electrophile Coupling. Tetrahedron Lett 2024; 145:155159. [PMID: 39036418 PMCID: PMC11258959 DOI: 10.1016/j.tetlet.2024.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of a new homogeneous reductant based on 4,4'-tBu2-2,2'-bipyridine, tBu-OED4, is reported. tBu-OED4 was prepared on a multigram scale in two steps from inexpensive and commercially available starting materials, with no chromatography required for purification. tBu-OED4 has a reduction potential of -1.33 V (vs Ferrocenium/Ferrocene) and is soluble in a range of common organic solvents. We demonstrate that tBu-OED4 can facilitate Ni/Co dual-catalyzed C(sp2)-C(sp3) cross-electrophile coupling reactions and is highly functional group tolerant. tBu-OED4 is expected to be a valuable addition to the set of homogeneous reductants available for organic transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Emily L Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Cameron C Germe
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Xiaofan Jia
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Seoyeon Kim
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Sheikh Nahiyan
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
7
|
Sujansky SJ, Hoteling GA, Bandar JS. A strategy for the controllable generation of organic superbases from benchtop-stable salts. Chem Sci 2024; 15:10018-10026. [PMID: 38966380 PMCID: PMC11220602 DOI: 10.1039/d4sc02524e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Organic superbases are a distinct class of strong base that enable numerous modern reaction applications. Despite their great synthetic potential, widespread use and study of superbases are limited by their air sensitivity and difficult preparation. To address this, we report air-stable carboxylate salts of BTPP and P2-t-Bu phosphazene superbases that, when added to solution with an epoxide, spontaneously generate freebase. These systems function as effective precatalysts and stoichiometric prereagents for superbase-promoted addition, substitution and polymerization reactions. In addition to improving the synthesis, shelf stability, handling and recycling of phosphazenes, this approach enables precise regulation of the rate of base generation in situ. The activation strategy effectively mimics manual slow addition techniques, allowing for control over a reaction's rate or induction period and improvement of reactions that require strong base but are also sensitive to its presence, such as Pd-catalyzed coupling reactions.
Collapse
Affiliation(s)
- Stephen J Sujansky
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Garrett A Hoteling
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
8
|
Morrison KM, Stradiotto M. The development of cage phosphine 'DalPhos' ligands to enable nickel-catalyzed cross-couplings of (hetero)aryl electrophiles. Chem Sci 2024; 15:7394-7407. [PMID: 38784740 PMCID: PMC11110136 DOI: 10.1039/d4sc01253d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Nickel-catalyzed cross-couplings of (hetero)aryl electrophiles with a diversity of nucleophiles (nitrogen, oxygen, carbon, and others) have evolved into competitive alternatives to well-established palladium- and copper-based protocols for the synthesis of (hetero)aryl products, including (hetero)anilines and (hetero)aryl ethers. A survey of the literature reveals that the use of cage phosphine (CgP) 'DalPhos' (DALhousie PHOSphine) bisphosphine-type ligands operating under thermal conditions currently offers the most broad substrate scope in nickel-catalyzed cross-couplings of this type, especially involving (hetero)aryl chlorides and phenol-derived electrophiles. The development and application of these DalPhos ligands is described in a ligand-specific manner that is intended to serve as a guide for the synthetic chemistry end-user.
Collapse
Affiliation(s)
- Kathleen M Morrison
- Department of Chemistry, Dalhousie University 6274 Coburg Road, P.O. 15000 Halifax Nova Scotia B3H 4R2 Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University 6274 Coburg Road, P.O. 15000 Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
9
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
10
|
Fisher SA, Simon CM, Fox PL, Cotnam MJ, DeRoy PL, Stradiotto M. Thermal Nickel-Catalyzed N-Arylation of NH-Sulfoximines with (Hetero)aryl Chlorides Enabled by PhPAd-DalPhos Ligation. Org Lett 2024; 26:1326-1331. [PMID: 38329789 DOI: 10.1021/acs.orglett.3c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report a versatile method for cross-coupling of NH-sulfoximines with (hetero)aryl chlorides, as well as bromide and sulfonate electrophiles, that makes use of the air-stable, commercial precatalyst (PhPAd-DalPhos)Ni(o-tol)Cl. Under optimized conditions a diverse electrophile scope is established, including the N-arylation of the pharmaceutical Clozapine. While 5 mol % Ni and 80 °C are commonly employed in this chemistry, successful examples utilizing 1 mol % Ni and/or 25 °C are presented. Competition experiments establish the superiority of NH-sulfoximine over primary sulfonamide as nucleophiles under these conditions.
Collapse
Affiliation(s)
- Samuel A Fisher
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Connor M Simon
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peter L Fox
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Patrick L DeRoy
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
11
|
Bodé NE, Stradiotto M. DalPhos/Nickel-Catalyzed C2-H Arylation of 1,3-Azoles Using a Dual-Base System. Org Lett 2023. [PMID: 38039305 DOI: 10.1021/acs.orglett.3c03393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
We report a versatile method for C2 functionalization of (benz)oxazoles and (benzo)thiazoles employing a tert-butylimino-tri(pyrrolidino)phosphorane/sodium trifluoroacetate (BTPP/NaTFA) "dual-base" system in combination with an air-stable Ni(II) precatalyst containing either CyPAd-DalPhos or PhPAd-DalPhos. These catalyst systems enable access to a reaction scope that encompasses a range of challenging oxidative addition partners, including (hetero)aryl chlorides as well as pivalates, tosylates, and other related phenol derivatives. The utility of this method is demonstrated through the derivatization of an active pharmaceutical ingredient and 5 mmol synthesis of a thiazole derivative.
Collapse
Affiliation(s)
- Nicholas E Bodé
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Metzler M, Virovets A, Lerner HW, Wagner M. B 2,N 4-Doped Heptacenes: Ambipolar Charge-Transfer Compounds with Deep LUMO Levels. J Am Chem Soc 2023; 145:23824-23831. [PMID: 37862629 DOI: 10.1021/jacs.3c09029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The B2,N4-doped heptacene H4 in which two N,N'-dihydrophenazine units are linked by two BMes bridges (Mes = mesityl) was synthesized via fourfold Buchwald-Hartwig coupling between 2,3,6,7-tetrachloro-9,10-dimesityl-9,10-dihydro-9,10-diboraanthracene and o-phenylenediamine (tBuXPhos-Pd-G3, DBU/NaOTf, 2-MeTHF, 50 °C, 16 h). Upon exposure to ambient air, H4 is oxidized to its N,N'-dihydro form H2; further oxidation with MnO2 furnishes the di(phenazine) derivative H0. Stirring under a blanket of H2 in the presence of Pd/C hydrogenates H0 back to H2 and ultimately H4. Yellow-colored H0 is a remarkably good electron acceptor with a LUMO-energy level of -3.9 eV; upon irradiation with a 405 nm LED in the presence of THF or 1,4-cyclohexadiene, H0 accepts two H atoms to furnish H2. One-electron reduction of H0 yields the isolable radical-anion salt Li[H0] (lithium naphthalenide, THF, -30 °C to rt). The ambipolar compounds H2 and H4 possess a navy blue and deep purple color, respectively, due to charge-transfer interactions from the electron-rich N,N'-dihydrophenazine donor(s) to the electron-accepting B2C4 core.
Collapse
Affiliation(s)
- Maurice Metzler
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt (Main), Germany
| |
Collapse
|
13
|
Rinehart NI, Saunthwal RK, Wellauer J, Zahrt AF, Schlemper L, Shved AS, Bigler R, Fantasia S, Denmark SE. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 2023; 381:965-972. [PMID: 37651532 DOI: 10.1126/science.adg2114] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.
Collapse
Affiliation(s)
- N Ian Rinehart
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rakesh K Saunthwal
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joël Wellauer
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Andrew F Zahrt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lukas Schlemper
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexander S Shved
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Raphael Bigler
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Serena Fantasia
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Xu J, Lim NK, Timmerman JC, Shen J, Clagg K, Orcel U, Bigler R, Trachsel E, Meier R, White NA, Burkhard JA, Sirois LE, Tian Q, Angelaud R, Bachmann S, Zhang H, Gosselin F. Second-Generation Atroposelective Synthesis of KRAS G12C Covalent Inhibitor GDC-6036. Org Lett 2023; 25:3417-3422. [PMID: 37162129 DOI: 10.1021/acs.orglett.3c00961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A chromatography-free asymmetric synthesis of GDC-6036 (1) was achieved via a highly atroposelective Negishi coupling of aminopyridine 5 and quinazoline 6b catalyzed by 0.5 mol % [Pd(cin)Cl]2 and 1 mol % (R,R)-Chiraphite to afford the key intermediate (Ra)-3. An alkoxylation of (Ra)-3 with (S)-N-methylprolinol (4) and a global deprotection generates the penultimate heterobiaryl intermediate 2. A controlled acrylamide installation by stepwise acylation/sulfone elimination and final adipate salt formation and crystallization delivered high-purity GDC-6036 (1).
Collapse
Affiliation(s)
- Jie Xu
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ngiap-Kie Lim
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jacob C Timmerman
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeff Shen
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Kyle Clagg
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ugo Orcel
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Raphael Bigler
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Etienne Trachsel
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Roland Meier
- Department of Solid State Sciences, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Nicholas A White
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Johannes A Burkhard
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Lauren E Sirois
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Qingping Tian
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Remy Angelaud
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephan Bachmann
- Department of Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Haiming Zhang
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Francis Gosselin
- Department of Small Molecule Process Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
15
|
Martinek N, Morrison KM, Field JM, Fisher SA, Stradiotto M. Comparative Screening of DalPhos/Ni Catalysts in C-N Cross-couplings of (Hetero)aryl Chlorides Enables Development of Aminopyrazole Cross-couplings with Amine Base. Chemistry 2023; 29:e202203394. [PMID: 36331074 DOI: 10.1002/chem.202203394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
A systematic competitive evaluation of the DalPhos ligand family in nickel-catalyzed N-arylation chemistry is reported, involving primary (linear and branched) and secondary alkylamines, as well as a primary five-membered heteroarylamine (aminopyrazole), in combination with a diverse set of test electrophiles and bases (NaOtBu, K2 CO3 , DBU/NaTFA). In addition to providing optimal ligand/catalyst identification, and bringing to light methodology limitations (e. g., unwanted C-O cross-coupling with NaOtBu), our survey enabled the development of the first efficient catalyst system for heteroatom-dense C-N cross-coupling of aminopyrazoles and related nucleophiles with (hetero)aryl chlorides by use of an amine 'dual-base' system.
Collapse
Affiliation(s)
- Nicole Martinek
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Kathleen M Morrison
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Justin M Field
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samuel A Fisher
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
16
|
Simon CM, Robertson KN, DeRoy PL, Yadav AA, Johnson ER, Stradiotto M. Nickel-Catalyzed N-Arylation of Sulfinamides: A Comparative Study versus Analogous Sulfonamide Cross-Couplings. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Connor M. Simon
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Patrick L. DeRoy
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec H4S 2E1, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
17
|
Charboneau DJ, Hazari N, Huang H, Uehling MR, Zultanski SL. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J Org Chem 2022; 87:7589-7609. [PMID: 35671350 PMCID: PMC9335070 DOI: 10.1021/acs.joc.2c00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn0 or Mn0, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
18
|
MacMillan JWM, McGuire RT, Stradiotto M. Organic Base Enabled Nickel‐Catalyzed Mono‐α‐Arylation of Feedstock Solvents. Chemistry 2022; 28:e202200764. [DOI: 10.1002/chem.202200764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Joshua W. M. MacMillan
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Ryan T. McGuire
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University 6274 Coburg Road, P.O. Box 15000 Halifax, Nova Scotia B3H 4R2 Canada
| |
Collapse
|
19
|
Guo X, Dang H, Wisniewski SR, Simmons EM. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Facilitated by a Weak Amine Base with Water as a Cosolvent. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuelei Guo
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Hester Dang
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
20
|
McGuire RT, Lundrigan T, MacMillan JWM, Robertson KN, Yadav AA, Stradiotto M. Mapping Dual-Base-Enabled Nickel-Catalyzed Aryl Amidations: Application in the Synthesis of 4-Quinolones. Angew Chem Int Ed Engl 2022; 61:e202200352. [PMID: 35085411 DOI: 10.1002/anie.202200352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 01/15/2023]
Abstract
The C-N cross-coupling of (hetero)aryl (pseudo)halides with NH substrates employing nickel catalysts and organic amine bases represents an emergent strategy for the sustainable synthesis of (hetero)anilines. However, unlike protocols that rely on photoredox/electrochemical/reductant methods within NiI/III cycles, the reaction steps that comprise a putative Ni0/II C-N cross-coupling cycle for a thermally promoted catalyst system using organic amine base have not been elucidated. Here we disclose an efficient new nickel-catalyzed protocol for the C-N cross-coupling of amides and 2'-(pseudo)halide-substituted acetophenones, for the first time where the (pseudo)halide is chloride or sulfonate, which makes use of the commercial bisphosphine ligand PAd2-DalPhos (L4) in combination with an organic amine base/halide scavenger, leading to 4-quinolones. Room-temperature stoichiometric experiments involving isolated Ni0, I, and II species support a Ni0/II pathway, where the combined action of DBU/NaTFA allows for room-temperature amide cross-couplings.
Collapse
Affiliation(s)
- Ryan T McGuire
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Travis Lundrigan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Joshua W M MacMillan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Arun A Yadav
- Paraza Pharma Inc., 2525 Avenue Marie-Curie, Montreal, Quebec, H4S 2E1, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
21
|
Delaney CP, Marron DP, Shved AS, Zare RN, Waymouth RM, Denmark SE. Potassium Trimethylsilanolate-Promoted, Anhydrous Suzuki-Miyaura Cross-Coupling Reaction Proceeds via the "Boronate Mechanism": Evidence for the Alternative Fork in the Trail. J Am Chem Soc 2022; 144:4345-4364. [PMID: 35230833 PMCID: PMC8930609 DOI: 10.1021/jacs.1c08283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies have shown that the critical transmetalation step in the Suzuki-Miyaura cross-coupling proceeds through a mechanism wherein an arylpalladium hydroxide complex reacts with an aryl boronic acid, termed the oxo-palladium pathway. Moreover, these same studies have established that the reaction between an aryl boronate and an arylpalladium halide complex (the boronate pathway) is prohibitively slow. Herein, studies on isolated intermediates, along with kinetic analysis, have demonstrated that the Suzuki-Miyaura reaction promoted by potassium trimethylsilanolate (TMSOK) proceeds through the boronate pathway, in contrast with other, established systems. Furthermore, an unprecedented, binuclear palladium(I) complex containing a μ-phenyl bridging ligand was characterized by NMR spectroscopy, mass spectrometry, and computational methods. Density functional theory (DFT) calculations suggest that the binuclear complex exhibits an open-shell ground electronic state, and reaction kinetics implicate the complex in the catalytic cycle. These results expand the breadth of potential mechanisms by which the Suzuki-Miyaura reaction can occur, and the novel binuclear palladium complex discovered has broad implications for palladium-mediated cross-coupling reactions of aryl halides.
Collapse
Affiliation(s)
- Connor P Delaney
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel P Marron
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander S Shved
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Scott E Denmark
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
McGuire RT, Lundrigan T, MacMillan JWM, Robertson KN, Yadav AA, Stradiotto M. Mapping Dual‐Base‐Enabled Nickel‐Catalyzed Aryl Amidations: Application in the Synthesis of 4‐Quinolones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | - Mark Stradiotto
- Dalhousie University Department of Chemistry Studley Campus B3H 4J3 Halifax CANADA
| |
Collapse
|
23
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
24
|
McGuire RT, Yadav AA, Stradiotto M. Nickel-Catalyzed N-Arylation of Fluoroalkylamines. Angew Chem Int Ed Engl 2021; 60:4080-4084. [PMID: 33201556 DOI: 10.1002/anie.202014340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Indexed: 12/30/2022]
Abstract
The Ni-catalyzed N-arylation of β-fluoroalkylamines with broad scope is reported for the first time. Use of the air-stable pre-catalyst (PAd2-DalPhos)Ni(o-tol)Cl allows for reactions to be conducted at room temperature (25 °C, NaOtBu), or by use of a commercially available dual-base system (100 °C, DBU/NaOTf), to circumvent decomposition of the N-(β-fluoroalkyl)aniline product. The mild protocols disclosed herein feature broad (hetero)aryl (pseudo)halide scope (X=Cl, Br, I, and for the first time phenol-derived electrophiles), encompassing base-sensitive substrates and enantioretentive transformations, in a manner that is unmatched by any previously reported catalyst system.
Collapse
Affiliation(s)
- Ryan T McGuire
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Arun A Yadav
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, Quebec, H4S 2E1, Canada
| | - Mark Stradiotto
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
25
|
Jurica JA, McMullen JP. Automation Technologies to Enable Data-Rich Experimentation: Beyond Design of Experiments for Process Modeling in Late-Stage Process Development. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jon A. Jurica
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Jonathan P. McMullen
- Process Research and Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
26
|
Puleo TR, Sujansky SJ, Wright SE, Bandar JS. Organic Superbases in Recent Synthetic Methodology Research. Chemistry 2021; 27:4216-4229. [DOI: 10.1002/chem.202003580] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas R. Puleo
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Stephen J. Sujansky
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Shawn E. Wright
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| | - Jeffrey S. Bandar
- Department of Chemistry Colorado State University Fort Collins Colorado 80523 USA
| |
Collapse
|
27
|
McGuire RT, Yadav AA, Stradiotto M. Nickel‐Catalyzed N‐Arylation of Fluoroalkylamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie Montreal Quebec H4S 2E1 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
28
|
Stradiotto M, Lundrigan T, Tassone JP. Nickel-Catalyzed N-Arylation of Amides with (Hetero)aryl Electrophiles by Using a DBU/NaTFA Dual-Base System. Synlett 2020. [DOI: 10.1055/a-1337-6459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe first nickel-catalyzed N-arylation of amides with (hetero)aryl (pseudo)halides employing an organic amine base is described. By using a bis(cyclooctadienyl)nickel/8-[2-(dicyclohexylphosphinyl)phenyl]-1,3,5,7-tetramethyl-2,4,6-trioxa-8-phosphaadamantane catalyst mixture in combination with DBU/NaTFA as a dual-base system, a diversity of (hetero)aryl chloride, bromide, tosylate, and mesylate electrophiles were successfully cross-coupled with structurally diverse primary amides, as well as a selection of secondary amide, lactam, and oxazolidone nucleophiles.
Collapse
|
29
|
Wilders AM, Henle J, Haibach MC, Swiatowiec R, Bien J, Henry RF, Asare SO, Wall AL, Shekhar S. Pd-Catalyzed Cross-Coupling of Hindered, Electron-Deficient Anilines with Bulky (Hetero)aryl Halides Using Biaryl Phosphorinane Ligands. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jeremy Henle
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rafal Swiatowiec
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jeffrey Bien
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Rodger F. Henry
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shardrack O. Asare
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda L. Wall
- Analytical Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
30
|
Lau SH, Yu P, Chen L, Madsen-Duggan CB, Williams MJ, Carrow BP. Aryl Amination Using Soluble Weak Base Enabled by a Water-Assisted Mechanism. J Am Chem Soc 2020; 142:20030-20039. [PMID: 33179489 DOI: 10.1021/jacs.0c09275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amination of aryl halides has become one of the most commonly practiced C-N bond-forming reactions in pharmaceutical and laboratory syntheses. The widespread use of strong or poorly soluble inorganic bases for amine activation nevertheless complicates the compatibility of this important reaction class with sensitive substrates as well as applications in flow and automated synthesis, to name a few. We report a palladium-catalyzed C-N coupling using Et3N as a weak, soluble base, which allows a broad substrate scope that includes bromo- and chloro(hetero)arenes, primary anilines, secondary amines, and amide type nucleophiles together with tolerance for a range of base-sensitive functional groups. Mechanistic data have established a unique pathway for these reactions in which water serves multiple beneficial roles. In particular, ionization of a neutral catalytic intermediate via halide displacement by H2O generates, after proton loss, a coordinatively unsaturated Pd-OH species that can bind amine substrate triggering intramolecular N-H heterolysis. This water-assisted pathway operates efficiently with even weak terminal bases, such as Et3N. The use of a simple, commercially available ligand, PAd3, is key to this water-assisted mechanism by promoting coordinative unsaturation in catalytic intermediates responsible for the heterolytic activation of strong element-hydrogen bonds, which enables broad compatibility of carbon-heteroatom cross-coupling reactions with sensitive substrates and functionality.
Collapse
Affiliation(s)
- Sii Hong Lau
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Peng Yu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Liye Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Christina B Madsen-Duggan
- Chemical Process Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, New Jersey 07902, United States
| | - Michael J Williams
- Chemical Process Development, Bristol Myers Squibb, 556 Morris Avenue, Summit, New Jersey 07902, United States
| | - Brad P Carrow
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Malig TC, Yunker LPE, Steiner S, Hein JE. Online High-Performance Liquid Chromatography Analysis of Buchwald–Hartwig Aminations from within an Inert Environment. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thomas C. Malig
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Lars P. E. Yunker
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sebastian Steiner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jason E. Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
32
|
Sirois LE, Lao D, Xu J, Angelaud R, Tso J, Scott B, Chakravarty P, Malhotra S, Gosselin F. Process Development Overcomes a Challenging Pd-Catalyzed C–N Coupling for the Synthesis of RORc Inhibitor GDC-0022. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Tappen J, Rodstein I, McGuire K, Großjohann A, Löffler J, Scherpf T, Gessner VH. Palladium Complexes Based on Ylide-Functionalized Phosphines (YPhos): Broadly Applicable High-Performance Precatalysts for the Amination of Aryl Halides at Room Temperature. Chemistry 2020; 26:4281-4288. [PMID: 31971642 PMCID: PMC7186839 DOI: 10.1002/chem.201905535] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Palladium allyl, cinnamyl, and indenyl complexes with the ylide-substituted phosphines Cy3 P+ -C- (R)PCy2 (with R=Me (L1) or Ph (L2)) and Cy3 P+ -C- (Me)PtBu2 (L3) were prepared and applied as defined precatalysts in C-N coupling reactions. The complexes are highly active in the amination of 4-chlorotoluene with a series of different amines. Higher yields were observed with the precatalysts in comparison to the in situ generated catalysts. Changes in the ligand structures allowed for improved selectivities by shutting down β-hydride elimination or diarylation reactions. Particularly, the complexes based on L2 (joYPhos) revealed to be universal precatalysts for various amines and aryl halides. Full conversions to the desired products are reached mostly within 1 h reaction time at room temperature, thus making L2 to one of the most efficient ligands in C-N coupling reactions. The applicability of the catalysts was demonstrated for aryl chlorides, bromides and iodides together with primary and secondary aryl and alkyl amines, including gram-scale applications also with low catalyst loadings of down to 0.05 mol %. Kinetic studies further demonstrated the outstanding activity of the precatalysts with TOF over 10.000 h-1 .
Collapse
Affiliation(s)
- Jens Tappen
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Ilja Rodstein
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Katie McGuire
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Angela Großjohann
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Julian Löffler
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Thorsten Scherpf
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Viktoria H. Gessner
- Faculty of Chemistry and BiochemistryChair of Inorganic Chemistry IIRuhr University BochumUniversitätsstr. 15044801BochumGermany
| |
Collapse
|
34
|
Malapit CA, Borrell M, Milbauer MW, Brigham CE, Sanford MS. Nickel-Catalyzed Decarbonylative Amination of Carboxylic Acid Esters. J Am Chem Soc 2020; 142:5918-5923. [PMID: 32207616 DOI: 10.1021/jacs.9b13531] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reaction of carboxylic acid derivatives with amines to form amide bonds has been the most widely used transformation in organic synthesis over the past century. Its utility is driven by the broad availability of the starting materials as well as the kinetic and thermodynamic driving force for amide bond formation. As such, the invention of new reactions between carboxylic acid derivatives and amines that strategically deviate from amide bond formation remains both a challenge and an opportunity for synthetic chemists. This report describes the development of a nickel-catalyzed decarbonylative reaction that couples (hetero)aromatic esters with a broad scope of amines to form (hetero)aryl amine products. The successful realization of this transformation was predicated on strategic design of the cross-coupling partners (phenol esters and silyl amines) to preclude conventional reactivity that forms inert amide byproducts.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Margarida Borrell
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Michael W Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor E Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
35
|
Liu RY, Dennis JM, Buchwald SL. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C-N Cross-Coupling. J Am Chem Soc 2020; 142:4500-4507. [PMID: 32040909 DOI: 10.1021/jacs.0c00286] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues associated with heterogeneous reaction conditions. Still, homogeneous C-N cross-coupling approaches cannot yet employ bases as weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, despite some advantages of such systems over those employing Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines using triethylamine (TEA) as base. The method is tolerant of sterically congested coupling partners, as well as those bearing base- and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the resultant Ni(II)-amido complex. Moreover, we determined that the preclusion of Lewis acid-base complexation between the Ni catalyst and the base, due to steric factors, is important for avoiding catalyst inhibition.
Collapse
Affiliation(s)
- Richard Y Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph M Dennis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Kashani SK, Jessiman JE, Newman SG. Exploring Homogeneous Conditions for Mild Buchwald–Hartwig Amination in Batch and Flow. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Saeed K. Kashani
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Jacob E. Jessiman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|
37
|
Chang RK, Clairmont BP, Lin S, MacArthur AHR. Amidation of Aryl Chlorides Using a Microwave-Assisted, Copper-Catalyzed Concurrent Tandem Catalytic Methodology. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Raymond K. Chang
- Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, Maryland 21402, United States
| | - Brice P. Clairmont
- Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, Maryland 21402, United States
| | - Shirley Lin
- Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, Maryland 21402, United States
| | - Amy H. Roy MacArthur
- Department of Chemistry, United States Naval Academy, 572 Holloway Road, Annapolis, Maryland 21402, United States
| |
Collapse
|