1
|
Patti S, Magrini Alunno I, Pedroni S, Riva S, Ferrandi EE, Monti D. Advances and Challenges in the Development of Immobilized Enzymes for Batch and Flow Biocatalyzed Processes. CHEMSUSCHEM 2025; 18:e202402007. [PMID: 39585729 PMCID: PMC11997919 DOI: 10.1002/cssc.202402007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
The development of immobilized enzymes both for batch and continuous flow biocatalytic processes has gained significant traction in recent years, driven by the need for cost-effective and sustainable production methods in the fine chemicals and pharmaceutical industries. Enzyme immobilization not only enables the recycling of biocatalysts but also streamlines downstream processing, significantly reducing the cost and environmental impact of biotransformations. This review explores recent advancements in enzyme immobilization techniques, covering both carrier-free methods, entrapment strategies and support-based approaches. At this regard, the selection of suitable materials for enzyme immobilization is examined, highlighting the advantages and challenges associated with inorganic, natural, and synthetic organic carriers. Novel opportunities coming from innovative binding strategies, such as genetic fusion technologies, for the preparation of heterogeneous biocatalysts with enhanced activity and stability will be discussed as well. This review underscores the need for ongoing research to address current limitations and optimize immobilization strategies for industrial applications.
Collapse
Affiliation(s)
- Stefania Patti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
- Department of Pharmaceutical SciencesUniversity ofMilanVia Mangiagalli 2520133MilanoItaly
| | - Ilaria Magrini Alunno
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sara Pedroni
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Erica Elisa Ferrandi
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC)CNRVia Bianco 920131MilanoItaly
| |
Collapse
|
2
|
Farkas E, Sátorhelyi P, Szakács Z, Dékány M, Vaskó D, Hornyánszky G, Poppe L, Éles J. Transaminase-catalysis to produce trans-4-substituted cyclohexane-1-amines including a key intermediate towards cariprazine. Commun Chem 2024; 7:86. [PMID: 38637664 PMCID: PMC11026398 DOI: 10.1038/s42004-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Cariprazine-the only single antipsychotic drug in the market which can handle all symptoms of bipolar I disorder-involves trans-4-substituted cyclohexane-1-amine as a key structural element. In this work, production of trans-4-substituted cyclohexane-1-amines was investigated applying transaminases either in diastereotope selective amination starting from the corresponding ketone or in diastereomer selective deamination of their diasteromeric mixtures. Transaminases were identified enabling the conversion of the cis-diastereomer of four selected cis/trans-amines with different 4-substituents to the corresponding ketones. In the continuous-flow experiments aiming the cis diastereomer conversion to ketone, highly diastereopure trans-amine could be produced (de > 99%). The yield of pure trans-isomers exceeding their original amount in the starting mixture could be explained by dynamic isomerization through ketone intermediates. The single transaminase-catalyzed process-exploiting the cis-diastereomer selectivity of the deamination and thermodynamic control favoring the trans-amines due to reversibility of the steps-allows enhancement of the productivity of industrial cariprazine synthesis.
Collapse
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, 1405, Budapest, Hungary
| | | | - Miklós Dékány
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János str. 11., 400028, Cluj-Napoca, Romania.
| | - János Éles
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| |
Collapse
|
3
|
Enzymatic Synthesis of Ascorbyl Palmitate in a Rotating Bed Reactor. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020644. [PMID: 36677702 PMCID: PMC9864738 DOI: 10.3390/molecules28020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ascorbyl palmitate, an ascorbic acid ester, is an important amphipathic antioxidant that has several applications in foods, pharmaceuticals, and cosmetics. The enzymatic synthesis of ascorbyl palmitate is very attractive, but few efforts have been made to address its process scale-up and implementation. This study aimed at evaluating the enzymatic synthesis of ascorbyl palmitate in a rotating basket reactor operated in sequential batches. Different commercial immobilized lipases were tested, and the most suitable reaction conditions were established. Among those lipases studied were Amano Lipase PS, Lipozyme® TL IM, Lipozyme® Novo 40086, Lipozyme® RM IM and Lipozyme® 435. Initially, the enzymes were screened based on previously defined synthesis conditions, showing clear differences in behavior. Lipozyme® 435 proved to be the best catalyst, reaching the highest values of initial reaction rate and yield. Therefore, it was selected for the following studies. Among the solvents assayed, 2-methyl-2-butanol and acetone showed the highest yields, but the operational stability of the catalyst was better in 2-methyl-2-butanol. The tests in a basket reactor showed great potential for large-scale application. Yields remained over 80% after four sequential batches, and the basket allowed for easy catalyst recycling. The results obtained in basket reactor are certainly a contribution to the enzymatic synthesis of ascorbyl palmitate as a competitive alternative to chemical synthesis. This may inspire future cost-effectiveness studies of the process to assess its potential as a viable alternative to be implemented.
Collapse
|
4
|
Ma T, Kong W, Liu Y, Zhao H, Ouyang Y, Gao J, Zhou L, Jiang Y. Asymmetric Hydrogenation of C = C Bonds in a SpinChem Reactor by Immobilized Old Yellow Enzyme and Glucose Dehydrogenase. Appl Biochem Biotechnol 2022; 194:4999-5016. [PMID: 35687305 DOI: 10.1007/s12010-022-03991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
The application of immobilized enzymes in pharmaceutical and bulk chemical production has been shown to be economically viable. We demonstrate the exceptional performance of a method that immobilizes the old yellow enzyme YqjM and glucose dehydrogenase (GDH) on resin for the asymmetric hydrogenation (AH) of C = C bonds in a SpinChem reactor. When immobilized YqjM and GDH are reused 10 times, the conversion of 2-methylcyclopentenone could reach 78%. Which is because the rotor of the SpinChem reactor effectively reduces catalyst damage caused by shear force in the reaction system. When the substrate concentration is 175 mM, an 87% conversion of 2-methylcyclopentenone is obtained. The method is also observed to perform well for the AH of C = C bonds in other unsaturated carbonyl compounds with the SpinChem reactor. Thus, this method has great potential for application in the enzymatic production of chiral compounds.
Collapse
Affiliation(s)
- Teng Ma
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weixi Kong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Hao Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yaping Ouyang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China. .,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China. .,Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| |
Collapse
|
5
|
Chatzikonstantinou AV, Giannakopoulou Α, Spyrou S, Simos YV, Kontogianni VG, Peschos D, Katapodis P, Polydera AC, Stamatis H. Production of hydroxytyrosol rich extract from Olea europaea leaf with enhanced biological activity using immobilized enzyme reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29624-29637. [PMID: 34676481 DOI: 10.1007/s11356-021-17081-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of β-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C. The biocatalyst was successfully used in both a rotating bed-reactor and a stir-tank reactor for the modification of the olive leaf extract leading to high conversion yields of oleuropein (exceeding 90%), while an up to 2.5 times enrichment in hydroxytyrosol was achieved. Over 20 phenolic compounds (from different classes of phytochemicals such as flavonoids, secoiridoids, and their derivatives) were identified, in the extract before and after its modification through various chromatographic and spectroscopic techniques. Finally, the biological activity of both extracts was evaluated. Compared to the non-modified extract, the modified one demonstrated 20% higher antioxidant activity, seven-fold higher antibacterial activity, and enhanced cytotoxicity against leiomyosarcoma cells.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece.
| | - Αrchontoula Giannakopoulou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Stamatia Spyrou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Vassiliki G Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Petros Katapodis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Angeliki C Polydera
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
6
|
Karlsson S, Benson H, Cook C, Currie G, Dubiez J, Emtenäs H, Hawkins J, Meadows R, Smith PD, Varnes J. From Milligram to Kilogram Manufacture of AZD4573: Making It Possible by Application of Enzyme-, Iridium-, and Palladium-Catalyzed Key Transformations. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Staffan Karlsson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Helen Benson
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Calum Cook
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Gordon Currie
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Jerome Dubiez
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Hans Emtenäs
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Janet Hawkins
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Meadows
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Peter D. Smith
- Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Jeffrey Varnes
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| |
Collapse
|
7
|
Seithümmer J, Öztürk M, Wunschik DS, Prießen J, Schultz HJ, Dornbusch M, Gutmann JS, Hoffmann-Jacobsen K. Enzymatic synthesis of novel aromatic-aliphatic polyesters with increased hydroxyl group density. Biotechnol J 2022; 17:e2100452. [PMID: 35233978 DOI: 10.1002/biot.202100452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Polyesters with pendant hydroxyl groups are attractive materials which offer additional functionalization points in the polymer chain. In contrast to chemical polycondensation, lipase regioselectivity enables the synthesis of these materials as certain hydroxyl groups remain unaffected during the enzymatic process. METHODS AND MAJOR RESULTS In this study, a combination of synthesis development and reactor design was used for the enzymatic synthesis of an aliphatic-aromatic polyester with two different classes of pendant hydroxyl groups. Using 2,6-bishydroxy(methyl)-p-cresol as diol in lipase catalyzed polycondensation with adipic acid required the addition of hexane diol as third monomer for polycondensation to take place. Reaction conditions were explored in order to identify the preferred reaction conditions for the incorporation of the aromatic diol and the enhancement of the hydroxyl group density. Post-polymerization with glycerol at low temperature integrated additional aliphatic hydroxyl groups, reduced the polydispersity and increased the end group functionality. CONCLUSION A new material with aromatic building blocks and boosted polymer chain reactivity was obtained, which is suggested to find application in various areas of material development from coatings to adhesives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Julia Seithümmer
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Melda Öztürk
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Dennis S Wunschik
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Joscha Prießen
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Heyko J Schultz
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Michael Dornbusch
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| | - Jochen S Gutmann
- Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, Krefeld, 47798, Germany.,Institute of Physical Chemistry and CENIDE (Center for Nanointegration), University Duisburg-Essen, Universitätsstraße 5, Essen, 45117, Germany
| | - Kerstin Hoffmann-Jacobsen
- Niederrhein University of Applied Sciences, Chemistry Department and Institute for Coatings and Surface Chemistry, Adlerstr. 32, Krefeld, 47798, Germany
| |
Collapse
|
8
|
Basetty S, Kumaraguru T. Preparation of enantiopure pregabalin intermediate using cross linked enzyme aggregates (CLEAs) in basket reactor. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2021.2023507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shalini Basetty
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Thenkrishnan Kumaraguru
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Szymańska K, Ciemięga A, Maresz K, Pudło W, Malinowski J, Mrowiec-Białoń J, Jarzębski AB. Catalytic Functionalized Structured Monolithic Micro-/Mesoreactors: Engineering, Properties, and Performance in Flow Synthesis: An Overview and Guidelines. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.789102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this review article, we first discussed the development of silica monoliths with hierarchical macro-/mesopore structure and their potential figures of merit as continuous-flow micro-/mesoreactors of up to 30 ml working volume. Making use of the flow hindrance of different pore structures seen from the Darcy law perspective, we discriminated four structures of the monoliths (M1–M4). We then summarized the most important results, mainly from our studies of continuous-flow structured monolithic reactors and rotating bed reactors (RBRs) filled with structured pellets, activated with various catalytic entities and enzymes. The results show that an increase in the flow rate and thus velocity in reactors activated with more conventional catalytic sites has no or a minor positive effect on the apparent reaction rate. On the contrary, in those with the most open structure (M1) and functionalized with enzymes, it could increase by more than two orders of magnitude even at low overpressures. The production systems worked stably for at least 200 h. To conclude, the synthetic system made of the hierarchically structured monoliths, or RBRs filled with structured catalytic pellets, lay the foundation for a new platform for the high-yield production of a wide variety of specialty chemicals, even on a multikilogram scale, in a safe and sustained manner.
Collapse
|
10
|
Delavault A, Opochenska O, Laneque L, Soergel H, Muhle-Goll C, Ochsenreither K, Syldatk C. Lipase-Catalyzed Production of Sorbitol Laurate in a "2-in-1" Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules 2021; 26:2759. [PMID: 34067126 PMCID: PMC8124474 DOI: 10.3390/molecules26092759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Surfactants, such as glycolipids, are specialty compounds that can be encountered daily in cleaning agents, pharmaceuticals or even in food. Due to their wide range of applications and, more notably, their presence in hygiene products, the demand is continuously increasing worldwide. The established chemical synthesis of glycolipids presents several disadvantages, such as lack of specificity and selectivity. Moreover, the solubility of polyols, such as sugars or sugar alcohols, in organic solvents is rather low. The enzymatic synthesis of these compounds is, however, possible in nearly water-free media using inexpensive and renewable building blocks. Using lipases, ester formation can be achieved under mild conditions. We propose, herein, a "2-in-1" system that overcomes solubility problems, as a Deep Eutectic System (DES) made of sorbitol and choline chloride replaces either a purely organic or aqueous medium. For the first time, 16 commercially available lipase formulations were compared, and the factors affecting the conversion were investigated to optimize this process, owing to a newly developed High-Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) method for quantification. Thus, using 50 g/L of lipase formulation Novozym 435® at 50 °C, the optimized synthesis of sorbitol laurate (SL) allowed to achieve 28% molar conversion of 0.5 M of vinyl laurate to its sugar alcohol monoester when the DES contained 5 wt.% water. After 48h, the de novo synthesized glycolipid was separated from the media by liquid-liquid extraction, purified by flash-chromatography and characterized thoroughly by one- and two-dimensional Nuclear Magnetic Resonance (NMR) experiments combined to Mass Spectrometry (MS). In completion, we provide initial proof of scalability for this process. Using a 2.5 L stirred tank reactor (STR) allowed a batch production reaching 25 g/L in a highly viscous two-phase system.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Oleksandra Opochenska
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Laura Laneque
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Hannah Soergel
- Institute for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.S.); (C.M.-G.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.S.); (C.M.-G.)
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| |
Collapse
|
11
|
Fellechner O, Smirnova I. Process design of a continuous biotransformation with in situ product removal by cloud point extraction. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver Fellechner
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| | - Irina Smirnova
- Institute of Thermal Separation Processes Hamburg University of Technology Hamburg Germany
| |
Collapse
|
12
|
Zhu Y, Chen Q, Shao L, Jia Y, Zhang X. Microfluidic immobilized enzyme reactors for continuous biocatalysis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00217k] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review investigates strategies for employing μ-IMERs for continuous biocatalysis via a top-down approach.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Qingming Chen
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Liyang Shao
- Department of Electrical and Electronic Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed Signal VLSI
- Institute of Microelectronics
- University of Macau
- Macau
- China
| | - Xuming Zhang
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| |
Collapse
|