1
|
Latha AT, Swamy PCA. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones. Chemistry 2024; 30:e202401841. [PMID: 38853149 DOI: 10.1002/chem.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| | - P Chinna Ayya Swamy
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| |
Collapse
|
2
|
Saha S, Krause JA, Guan H. C(sp)-H, S-H, and Sn-H Bond Activation with a Cobalt(I) Pincer Complex. Inorg Chem 2024; 63:13689-13699. [PMID: 38976491 DOI: 10.1021/acs.inorgchem.4c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study focuses on the stoichiometric reactions of {2,6-(iPr2PO)2C6H3}Co(PMe3)2 with terminal alkynes, thiols, and tin hydrides as part of an effort to develop catalytic, two-electron processes with cobalt. This specific Co(I) pincer complex proves to be effective for cleaving the C(sp)-H, S-H, and Sn-H bonds to give oxidative addition products with the general formula {2,6-(iPr2PO)2C6H3}CoHX(PMe3) (X = alkynyl, thiolate, and stannyl groups) along with the free PMe3. These reactions typically reach completion when the substituents on acetylene, sulfur, and tin are electron-withdrawing groups (e.g., phenyl, pyridyl, and alkenyl groups). In contrast, alkyl-substituted acetylenes, 1-pentanethiol, and tributyltin hydride are partially converted due to the equilibria with the corresponding oxidative addition products. The Co(I) pincer complex is not a hydrothiolation catalyst but capable of catalyzing the hydrostannation of terminal alkynes with Ph3SnH to produce β-(Z)-alkenylstannanes selectively.
Collapse
Affiliation(s)
- Sayantani Saha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
3
|
Luque-Gómez A, García-Orduña P, Lahoz FJ, Iglesias M. Synthesis and catalytic activity of well-defined Co(I) complexes based on NHC-phosphane pincer ligands. Dalton Trans 2023; 52:12779-12788. [PMID: 37615585 DOI: 10.1039/d3dt00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Manuel Iglesias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| |
Collapse
|
4
|
Fan Q, Du X, Yang W, Li Q, Huang W, Sun H, Hinz A, Li X. Effects of silylene ligands on the performance of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes. Dalton Trans 2023; 52:6712-6721. [PMID: 37129049 DOI: 10.1039/d3dt00372h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to study the effects of silylene ligands on the catalytic activity of carbonyl hydrosilylation catalyzed by cobalt phosphine complexes, readily available model catalysts are required. In this contribution, a comparative study of the hydrosilylation of aldehydes and ketones catalyzed by tris(trimethylphosphine) cobalt chloride, CoCl(PMe3)3 (1), and bis(silylene) cobalt chloride, Co(LSi:)2(PMe3)2Cl (2, LSi: = {PhC(NtBu)2}SiCl), is presented. It was found that both complexes 1 and 2 are good catalysts for the hydrosilylation of aldehydes and ketones under mild conditions. This catalytic system has a broad substrate scope and selectivity for multi-functional substrates. Silylene complex 2 shows higher activity than complex 1, bearing phosphine ligands, for aldehydes, but conversely, for ketones, the activity of complex 1 is higher than that of complex 2. It is worth noting that in the process of mechanistic studies the intermediates (PMe3)3Co(H)(Cl)(PhH2Si) (3) and (LSi:)2(PMe3)Co(H)(Cl)(PhH2Si) (4) were isolated from the stoichiometric reactions of 1 and 2 with phenylsilane, respectively. Further experiments confirmed that complex 3 is a real intermediate. A possible catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by 1 was proposed based on the experimental investigation and literature reports, and this mechanism was further supported by DFT studies. The bis(silylene) complex 4 showed complicated behavior in solution. A series of experiments were designed to study the catalytic mechanism for the hydrosilylation of carbonyl compounds catalyzed by complex 2. According to the experimental results, the hydrosilylation of aldehydes catalyzed by 1 proceeds via a different mechanism than that of the analogous reaction with complex 2 as the catalyst. In the case of ketones, complex 4 is a real intermediate, indicating that both 1 and 2 catalyze the reaction by the same mechanism. The molecular structures of 3 and 4 were determined by single crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Xinyu Du
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| | - Alexander Hinz
- Karlsruher Institut für Technologie (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China.
| |
Collapse
|
5
|
André RF, Palazzolo A, Poucin C, Ribot F, Carenco S. Phosphine-Catalyzed Activation of Phenylsilane for Benzaldehyde Reduction. Chempluschem 2023; 88:e202300038. [PMID: 36861404 DOI: 10.1002/cplu.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/03/2023]
Abstract
Hydrosilylation reactions are commonly used for the reduction of carbonyl bonds in fine chemistry, catalyzed by transition metal complexes. The current challenge is to expand the scope of metal-free alternative catalysts, including in particular organocatalysts. This work describes the organocatalyzed hydrosilylation of benzaldehyde with a phosphine, introduced at 10 mol%, and phenylsilane at room temperature. The activation of phenylsilane was highly dependent on the physical properties of the solvent such as the polarity, and the highest conversions were obtained in acetonitrile and propylene carbonate with yields of 46 % and 97 %, respectively. The best results of the screening over 13 phosphines and phosphites were obtained with linear trialkylphoshines (PMe3 , Pn Bu3 , POct3 ), indicating the importance of their nucleophilicity, with yields of 88 %, 46 % and 56 %, respectively. With the help of heteronuclear 1 H-29 Si NMR spectroscopy, the products of the hydrosilylation (PhSiH3-n (OBn)n ) were identified, allowing a monitoring of the concentration in the different species, and thereby of their reactivity. The reaction displayed an induction period of ca. 60 min, followed by the sequential hydrosilylations presenting various reaction rates. In agreement with the formation of partial charges in the intermediate state, we propose a mechanism based on a hypervalent silicon center via the Lewis base activation of the silicon Lewis acid.
Collapse
Affiliation(s)
- Rémi F André
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Alberto Palazzolo
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Cyprien Poucin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - François Ribot
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| | - Sophie Carenco
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
6
|
Bories CC, Gontard G, Barbazanges M, Derat E, Petit M. Hydrido-Cobalt Complexes for the Chemo- and Regioselective 1,2-Silylative Dearomatization of N-Heteroarenes. Org Lett 2023; 25:843-848. [PMID: 36688841 DOI: 10.1021/acs.orglett.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe an efficient regio- and chemoselective dearomatization of N-heteroarenes using hydrido-cobalt catalysts. Reactions were performed under mild conditions on a wide range of N-heteroarenes leading exclusively to the silyl-1,2-dihydroheteroarene. Various quinolines and pyridines bearing electron-donating and electron-withdrawing substituents are compatible with this methodology. DFT calculations, NMR spectroscopic studies, and X-ray diffraction analysis underlined the importance of a second silane for the final step of the reaction.
Collapse
Affiliation(s)
- Cassandre C Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
7
|
Stevens JE, Moore CE, Thomas CM. Si-H Bond Activation and Dehydrogenative Coupling of Silanes across the Iron-Amide Bond of a Bis(amido)bis(phosphine) Iron(II) Complex. J Am Chem Soc 2023; 145:794-799. [PMID: 36594789 DOI: 10.1021/jacs.2c12157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite the utility of Si-Si bonds, there are relatively few examples of Si-Si bond formation by base metals. In this work, a four-coordinate iron complex, (PNNP)FeII, is shown to strongly activate the Si-H bonds in primary silanes across the Fe-amide bonds in a metal-ligand cooperative fashion. Upon treatment with excess silane, Si-Si dehydrogenative homocoupling is shown to occur across the Fe-Namide bond without concomitant oxidation and spin state changes at the Fe center.
Collapse
Affiliation(s)
- Jeremiah E Stevens
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Linke A, Decker D, Drexler HJ, Beweries T. Iridium(III) bis(thiophosphinite) pincer complexes: synthesis, ligand activation and applications in catalysis. Dalton Trans 2022; 51:10266-10271. [PMID: 35748648 DOI: 10.1039/d2dt01633h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iridium(III) bis(thiophosphinite) complexes of the type [(RPSCSPR)Ir(H)(Cl)(py)] (RPSCSPR = κ3-(2,6-SPR2)C6H3) (R = tBu, iPr, Ph) can be prepared from the ligand precursors 1,3-(SPR2)C6H4 by C-H activation at Ir using [Ir(COE)2Cl]2 or [Ir(COD)Cl]2. Optimisation of the protocol for complexation showed that direct cyclometallation in the absence or presence of pyridine, as well as C-H activation in the presence of H2 are viable options that, depending on the phosphine substituent furnish the five-coordinate Ir(III) hydride chloride complexes 2-R or the base stabilised species 3-R in good yields. In case of the PhPSCSPPh ligand, P-S activation results in the formation of a thiophosphine stabilised Ir(III) hydride complex [(PhPSCSPPh)Ir(H)(Cl)(PPh2SH)] (4). Reaction of 2-tBu with H2 in the presence of base furnishes an Ir(III) dihydride complex (5) via a labile Ir(III) dihydride-dihydrogen complex (6). All complexes are inactive for transfer dehydrogenation of cyclooctane in the presence of NaOtBu and tert-butylethylene, likely due to decomposition of the Ir complex in the presence of base at higher temperature.
Collapse
Affiliation(s)
- Alexander Linke
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - David Decker
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Hans-Joachim Drexler
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| |
Collapse
|
10
|
Schiltz P, Casaretto N, Auffrant A, Gosmini C. Cobalt Complexes Supported by Phosphinoquinoline Ligands for the Catalyzed Hydrosilylation of Carbonyl Compounds. Chemistry 2022; 28:e202200437. [DOI: 10.1002/chem.202200437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Pauline Schiltz
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| | - Corinne Gosmini
- Laboratoire de Chimie Moléculaire (LCM) CNRS Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay 91120 Palaiseau France
| |
Collapse
|
11
|
Bories CC, Barbazanges M, Derat E, Petit M. Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cassandre C. Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
12
|
Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tomoaki Mitsuyama
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Sayaka Shin
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Momoko Hori
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Ryuta Ishikawa
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
13
|
Lin T, Qian P, Wang YE, Ou M, Jiang L, Zhu C, Xu Y, Xiong D, Mao J. Palladium-Catalyzed Direct Arylation of 2-Pyridylmethyl Silanes with Aryl Bromides. Org Lett 2021; 23:3000-3003. [PMID: 33779175 DOI: 10.1021/acs.orglett.1c00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first palladium-catalyzed direct arylation of 2-pyridylmethyl silanes with aryl bromides to generate a diverse array of aryl(2-pyridyl)-methyl silane derivatives has been developed. This protocol facilitates access to various kinds of heterocycle-containing silanes in good to excellent yields (40 examples, 66-97% yield) with good functional group tolerance. The scalability of this transformation is demonstrated.
Collapse
Affiliation(s)
- Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Pengcheng Qian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Mingjie Ou
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Long Jiang
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, P. R. China
| | - Chen Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yuchuan Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| |
Collapse
|