1
|
Sun MY, Cheung SC, Wang XZ, Jin JK, Guo J, Li D, He J. Structural Reassignment of Covalent Organic Framework-Supported Palladium Species: Heterogenized Palladacycles as Efficient Catalysts for Sustainable C-H Activation. ACS CENTRAL SCIENCE 2024; 10:1848-1860. [PMID: 39463833 PMCID: PMC11503496 DOI: 10.1021/acscentsci.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Recent decades have witnessed remarkable progress in ligand-promoted C-H activation with palladium catalysts. While a number of transformations have been achieved with a fairly broad substrate scope, the general requirements for high palladium loadings and enormous challenges in catalyst recycling severely limit the practical applications of C-H activation methodologies in organic synthesis. Herein, we incorporate N,C-ligand-chelated palladacycles into rigid, porous, and crystalline covalent organic frameworks for the C-H arylation of indole and pyrrole derivatives. These heterogeneous palladium catalysts exhibit superior stability and recyclability compared to their homogeneous counterparts. We not only produce several highly reactive palladacycles embedded on new framework supports to facilitate C-H activation/C-C bond-forming reactions but also reassign heterogenized palladium species on frameworks containing a benzaldehyde-derived imine moiety as imine-based palladacycles via comprehensive characterization. Our findings provide guidance for the rational design of framework-supported metallacycles in the development of heterogeneous transition-metal catalysis.
Collapse
Affiliation(s)
- Meng-Ying Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Sheung Chit Cheung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Xue-Zhi Wang
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ji-Kang Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Guo
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Dan Li
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jian He
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
2
|
Chaudhari KR, Wadawale AP, Pathak AK, Dey S. Linkage Isomers of Triangular Pd Metallacycles and Catalysis in Aqueous Suzuki Coupling Reaction. Inorg Chem 2024; 63:1427-1438. [PMID: 38166362 DOI: 10.1021/acs.inorgchem.3c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The water-soluble trinuclear Pd metallacycles [Pd(tmeda)(4-Spy)]3(X)3 (tmeda = tetramethylethylenediamine, X = OTf, 2; NO3, 3) were synthesized from the ambidentate ligand 4-pyridylthiolate (Spy-) and [Pd(tmeda)X2] in 80 and 70% yield, respectively. Two possible linkage isomers are found in solution (slow interconversion found in the NMR) and in the solid state. Density functional calculations showed that the energy of the isomer with a D3-symmetric arrangement of the SPy ligand and all Pd atoms having N∧NPdSN coordination is only 7 kcal/mol lower. When reacting [Pd(tmeda)(NO3)2] with 4,4'-biphenyldithiolate (S2bph2-), the tetranuclear [{Pd(tmeda)}4(μ-S2bph)2](NO3)4 (1) was formed. A new type of undecanuclear Pd cluster was separated as a minor product from an acetone solution of 2 in air. The new complexes represent the first examples of water-soluble Pd metallacycles constructed from a pyridine-thiolate ligand. They show catalytic activity with turnover numbers ranging from 9 to 420 in aqueous Suzuki cross-coupling reactions using phenyl boronic acid and a number of aryl halides. An optimized system gave a TON of 6,900,000 and a TOF of 492,857 h-1. The catalyst could be reused eight times, and the activity has been attributed to the formation of PdNPs.
Collapse
Affiliation(s)
- Kamal R Chaudhari
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amey P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arup Kumar Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| | - Sandip Dey
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Mumbai 400094, India
| |
Collapse
|
3
|
Rueda-Espinosa J, Ramanayake D, Ball ND, Love JA. Synthesis of 2-arylpyridines by the Suzuki-Miyaura cross-coupling of PyFluor with hetero(aryl) boronic acids and esters. CAN J CHEM 2023; 101:765-772. [PMID: 38550267 PMCID: PMC10978044 DOI: 10.1139/cjc-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The Suzuki-Miyaura cross-coupling of pyridine-2-sulfonyl fluoride (PyFluor) with hetero(aryl) boronic acids and pinacol boronic esters is reported. The reactions can be performed using Pd(dppf)Cl2 as the catalyst, at temperatures between 65 and 100 °C and in the presence of water and oxygen. This transformation generates 2-arylpyridines in modest to good yields (5%-89%).
Collapse
Affiliation(s)
- Juan Rueda-Espinosa
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Dewni Ramanayake
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicholas D. Ball
- Department of Chemistry, Pomona College, 645 North College Avenue, Claremont, CA 91711, USA
| | - Jennifer A. Love
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Gaware S, Kori S, Serrano JL, Dandela R, Hilton S, Sanghvi YS, Kapdi AR. Rapid plugged flow synthesis of nucleoside analogues via Suzuki-Miyaura coupling and heck Alkenylation of 5-Iodo-2'-deoxyuridine (or cytidine). J Flow Chem 2023; 13:1-18. [PMID: 37359287 PMCID: PMC10019434 DOI: 10.1007/s41981-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/09/2023] [Indexed: 03/17/2023]
Abstract
Nucleosides modification via conventional cross-coupling has been performed using different catalytic systems and found to take place via long reaction times. However, since the pandemic, nucleoside-based antivirals and vaccines have received widespread attention and the requirement for rapid modification and synthesis of these moieties has become a major objective for researchers. To address this challenge, we describe the development of a rapid flow-based cross-coupling synthesis protocol for a variety of C5-pyrimidine substituted nucleosides. The protocol allows for facile access to multiple nucleoside analogues in very good yields in a few minutes compared to conventional batch chemistry. To highlight the utility of our approach, the synthesis of an anti-HSV drug, BVDU was also achieved in an efficient manner using our new protocol. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s41981-023-00265-1.
Collapse
Affiliation(s)
- Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| | - Jose Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha, Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Odisha-751013, Bhubaneswar, India
| | - Stephen Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX UK
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge, California, Encinitas CA92024-6615 USA
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh road, Mumbai, Matunga 400019 India
| |
Collapse
|
5
|
Serrano JL. Water-Soluble Pd-Imidate Complexes as Versatile Catalysts for the Modification of Unprotected Halonucleosides. CHEM REC 2022; 22:e202200179. [PMID: 36094784 DOI: 10.1002/tcr.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Modification of unprotected nucleosides has been attracting continuous interest, since these building blocks themselves and their phosphate-upgraded corresponding nucleotides have shown a plethora of uses in fields like biochemistry or pharmacy. Pd-catalyzed cross-coupling reactions, conducted in water or its mixtures with polar organic solvents, have frequently been the researchers' choice for the functionalization of the purine/pyrimidine base of the unprotected nucleosides. In this scenario, the availability of hydrophilic ligands and its water-soluble palladium complexes has markedly set the pace of the advances. The approach of our group to the synthesis of such complexes, Pd-imidates specifically, has faced critical stages, namely the jump to synthesize water soluble complexes from our experience working in conventional solvents, the preparation of phosphine free complexes and the overall goal of getting catalytic systems able to work close to room temperature. The continuous feedback with Kapdi's group, experienced in the chemistry of nucleosides, has produced over the last decade the interesting results in both fields presented here.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental., Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203, Cartagena, Spain
| |
Collapse
|
6
|
Kori S, Khandagale D, Sanghvi YS, Serrano JL, Lozano P, Kapdi AR. Suzuki-Miyaura Coupling, Heck Alkenylation, and Amidation of DMTr-Protected 5-Iodo-2'-Deoxyuridine via Palladium-catalyzed Reactions. Curr Protoc 2022; 2:e502. [PMID: 35895086 DOI: 10.1002/cpz1.502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modification of nucleosides via cross-coupling processes has been carried out extensively on unprotected halonucleosides to produce functionalized nucleosides that are often developed for incorporation into oligonucleotides or used as fluorescent probes. This approach requires protection of the 5'-OH with the 4,4'-dimethoxytrityl (DMTr) group, which is complicated and a common cause of reaction failure. Here we report a method for direct functionalization of 5'-O-DMTr-5-iodo-2'-deoxyuridine via Suzuki-Miyaura cross-coupling, Heck alkenylation, and carboamidation. This approach facilitates rapid synthesis of a variety of C5-substituted 5'-O-DMTr-2'-deoxyuridine derivatives. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the SerrKap palladacycle complex Basic Protocol 2: Suzuki-Miyaura coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 3: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 4: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine with Ruth linker using Pd(OAc)2 /PTABS Basic Protocol 5: Carbonylative amidation of 5'-O-DMTr-5-iodo-2'-deoxyuridine using Pd(OAc)2 /PTABS.
Collapse
Affiliation(s)
- Santosh Kori
- Institute of Chemical Technology, Matunga, Mumbai, India
- Department of Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus Bhubaneswar, Odisha, India
| | | | | | - Jose L Serrano
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, European University of Technology, Cartagena, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence, Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Anant R Kapdi
- Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
7
|
Serrano JL, Gaware S, Pérez JA, Pérez J, Lozano P, Kori S, Dandela R, Sanghvi YS, Kapdi AR. Quadrol-Pd(II) complexes: phosphine-free precatalysts for the room-temperature Suzuki-Miyaura synthesis of nucleoside analogues in aqueous media. Dalton Trans 2022; 51:2370-2384. [PMID: 35043803 DOI: 10.1039/d1dt03778a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Commercially available Quadrol, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine (THPEN), has been used for the first time as a N^N-donor neutral hydrophilic ligand in the synthesis and characterization of new water soluble palladium(II) complexes containing chloride, phthalimidate or saccharinate as co-ligands. [PdCl2(THPEN)] (1) [Pd(phthal)2(THPEN)] (2), [Pd(sacc)2(THPEN)] (3) and the analogous complex with the closely related N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (THEEN) [Pd(sacc)2(THEEN)] (4) were efficiently prepared in a one-pot reaction from [PdCl2(CH3CN)2] or Pd(OAc)2. Structural characterization of 1 and 3 by single crystal X-ray diffraction produced the first structures reported to date of palladium complexes with Quadrol. The resultant palladium complexes are highly soluble in water and were found to be effective as phosphine-free catalysts for the synthesis of functionalized nucleoside analogues under room-temperature Suzuki-Miyaura cross-coupling conditions between 5-iodo-2'-deoxyuridine (& 5-iodo-2'-deoxycytidine) with different aryl boronic acids in neat water. This is the first report of the coupling process performed on nucleosides in water at room temperature.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Jose Antonio Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - José Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30071 Murcia, Spain
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Yogesh S Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road, Encinitas, California, 92024-6615, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| |
Collapse
|