1
|
Parker K, Bollis NE, Ryzhov V. Ion-molecule reactions of mass-selected ions. MASS SPECTROMETRY REVIEWS 2024; 43:47-89. [PMID: 36447431 DOI: 10.1002/mas.21819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gas-phase reactions of mass-selected ions with neutrals covers a very broad area of fundamental and applied mass spectrometry (MS). Oftentimes, ion-molecule reactions (IMR) can serve as a viable alternative to collision-induced dissociation and other ion dissociation techniques when using tandem MS. This review focuses on the literature pertaining applications of IMR since 2013. During the past decade considerable efforts have been made in analytical applications of IMR, including advances in one of the major techniques for characterization of unsaturated fatty acids and lipids, ozone-induced dissociation, and the development of a new technique for sequencing of large ions, hydrogen atom attachment/abstraction dissociation. Many advances have also been made in identifying gas-phase chemistry specific to a functional group in organic and biological compounds, which are useful in structure elucidation of analytes and differentiation of isomers/isobars. With "soft" ionization techniques like electrospray ionization having become mainstream for quite some time now, the efforts in the area of metal ion catalysis have firmly moved into exploring chemistry of ligated metal complexes in their "natural" oxidation states allowing to model individual steps of mechanisms in homogeneous catalysis, especially in combination with high-level DFT calculations. Finally, IMR continue to contribute to the body of knowledge in the area of chemistry of interstellar processes.
Collapse
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas E Bollis
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| |
Collapse
|
2
|
Lee D, Shintani R. Palladium-catalyzed synthesis of 4-sila-4 H-benzo[ d][1,3]oxazines by intramolecular Hiyama coupling. Chem Sci 2023; 14:4114-4119. [PMID: 37063809 PMCID: PMC10094166 DOI: 10.1039/d2sc06425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
A palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines, silicon-switched analogs of biologically relevant 4H-benzo[d][1,3]oxazines, was developed by the intramolecular Hiyama coupling of 3-amido-2-(arylsilyl)aryl triflates.
Collapse
Affiliation(s)
- Donghyeon Lee
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
3
|
Fabijanczuk KC, Altalhi WAO, Aldajani AMO, Canty AJ, McLuckey SA, O'Hair RAJ. Ion-pairs as a gateway to transmetalation: aryl transfer from boron to nickel and magnesium. Dalton Trans 2022; 51:5699-5705. [PMID: 35323833 DOI: 10.1039/d2dt00746k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase ion-ion reactions between tris-1,10-phenantholine metal dications, [(phen)3M]2+ (where M = Ni and Mg), and the tetraphenylborate anion yield the ion-pairs {[(phen)3M]2+[BPh4]-}+. The ion-pairs undergo transmetalation upon loss of a phen ligand to give the organometallic complexes [(phen)2M(Ph)]+. DFT calculations, used to determine the energy barriers for the transmetalation reactions and the hydrolysis reactions, are entirely consistent with the experimental results.
Collapse
Affiliation(s)
| | - Weam A O Altalhi
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia. .,Department of Chemistry, Prince Sattam Bin Abdulaziz University, Hotat Bani Tamim, 16511 Saudi Arabia
| | - Asma M O Aldajani
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia. .,Department of Chemistry, College of Science, University of Bisha, Bisha 61922, P.O. Box 551, Saudi Arabia
| | - Allan J Canty
- School of Physical Sciences - Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
4
|
Brydon SC, da Silva G, O'Hair RAJ, White JM. Experimental and theoretical investigations into the mechanisms of haliranium ion π-ligand exchange reactions with cyclic alkenes in the gas phase. Phys Chem Chem Phys 2021; 23:25572-25589. [PMID: 34783339 DOI: 10.1039/d1cp04494j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haliranium ions are intermediates often involved in complex cyclisations, where their structure allows for control over stereospecific outcomes. Extending previous studies into their structure and reactivity in the gas phase, this work focuses on the bimolecular reactivity of ethyl bromiranium and iodiranium ions with cyclic alkenes. The products observed via mass spectrometry were broadly attributed to either addition by cyclohexene at the iranium carbon or attack at the heteroatom to undergo associative π-ligand exchange. The model proposed was supported by both kinetic experiments and DFT calculations, where the rate of parent ion consumption proceeded at the collision rate (Br: k2 = 1.25 × 10-9 and I: k2 = 1.28 × 10-9 cm3 molecule-1 s-1) with the subsequent partitioning dependent on the relative stability of the initial intermediates and the relatively large barriers present in the addition pathway. Exploration of the effect of cycloalkene ring strain on the iodiranium ion reactivity was conducted with a series of crossover experiments with 50 : 50 mixtures of either cyclohexene or cis-cyclooctene and styrene, where the outcomes were dependent on the competing ring strain relief gained by reaction with each neutral. The nature of the exchange transition state was determined to be pseudocoarctate following both natural bond orbital (NBO) and anisotropy of the induced current density (ACID) analysis.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Gabriel da Silva
- Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jonathan M White
- School of Chemistry and Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Parker K, Weragoda GK, Mohr A, Canty AJ, O’Hair RAJ, Ryzhov V. Cracking and Dehydrogenation of Cyclohexane by [(phen)M(X)] + (M = Ni, Pd, Pt; X = H, CH 3) in the Gas Phase. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Geethika K. Weragoda
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Alyssa Mohr
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Allan J. Canty
- School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - Richard A. J. O’Hair
- School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| |
Collapse
|