1
|
Li X, Yang W, Li Q, Sun H, Hinz A, Li X. B(C 6F 5) 3-Regulated Selectivity of Aryl Alkene Hydrosilylation Catalyzed by a [P,C]-Chelate Cobalt(I) Complex. Inorg Chem 2025; 64:5661-5671. [PMID: 40053480 DOI: 10.1021/acs.inorgchem.5c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In this article, two cobalt complexes bearing bidentate ligands, [Si,C]-chelate cobalt(I) complex [(Si,C)Co(PMe3)3] (1) and [P,C]-chelate cobalt(I) complex [(P,C)Co(PMe3)3] (2) were synthesized by activating Csp2-H of the corresponding 2-(diphenylsilylenoaminomethyl) pyridine (L1) PyN(Me)SiL (L = PhC(NtBu)2) or 2-(diphenylphosphinoaminomethyl) pyridine (L2) PyN(Me)PPh2 with CoMe(PMe3)4. The catalytic performance of complexes 1 and 2 for alkene hydrosilylation was studied. Because of the different electronic properties of the phosphine and the silylene pincer ligand, the catalytic effect of phosphine complex 2 is superior to that of silylene complex 1 as indicated by faster conversion and higher selectivity for most of the selected substrates. Both aromatic alkenes and alkyl alkenes are mainly anti-Markovnikov converted to products. In the study of the catalytic mechanism, cobalt(III) hydride A' is proposed as the key intermediate. Unexpectedly, when B(C6F5)3 is added to the system, the selectivity of the catalytic system for aromatic alkenes is reversed to afford mainly Markovnikov products. Through experimental exploration, it is proposed that the addition of B(C6F5)3 induces a coordination vacancy at the Co center, which favors the initial coordination of the olefin and, in turn, changes the catalytic reaction mechanism, resulting in a reversal of regioselectivity.
Collapse
Affiliation(s)
- Xiaomiao Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry (AOC), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
2
|
Li Q, Sun H, Li X, Fuhr O, Fenske D. Synthesis of Dinuclear Cobalt Silylene Complexes and Their Catalytic Activity for Alkene Hydrosilylation Reactions. Inorg Chem 2024; 63:18563-18573. [PMID: 39324828 DOI: 10.1021/acs.inorgchem.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A novel dinuclear silylene cobalt complex [((Me3P)2Co)(PMe2)(CoCl(PMe3))(Si(NCH2PPh2)2C6H4)] (1) supported by the [PSi(silylene)P] ligand was prepared through the reaction of N-heterocyclic [PSiP] pincer ligand L1 (HSiCl(NCH2PPh2)2C6H4) with Co(PMe3)4. Complex [((Me3P)2Co)2(Si(NCH2PPh2)2C6H4)] (2) was formed through the reaction of complex 1 with MeLi. To the best of our knowledge, complexes 1 and 2 are the first examples of dinuclear silylene cobalt complexes supported by the [PSi(silylene)P] ligand. A new preligand L2 (SiCl2(NCH2PPh2)2C6H4) was synthesized, and the reaction of preligand L2 with Co(PMe3)4 afforded silyl cobalt complex [((Me3P)2Co)(SiCl(NCH2PPh2)2C6H4)] (3). The reaction of 3 with CO delivered cobalt carbonyl complex [((Me3P)(CO)Co)(Si(NCH2PPh2)2C6H4)]2O (4). The catalytic activity of cobalt complexes 1-4 on the hydrosilylation of alkenes was explored. Among the four complexes, complex 1 has the best catalytic activity. The catalytic process could be promoted with NaBHEt3 as an additive, and a complete conversion with an excellent selectivity of 98:2 (b/l) could be reached at 120 °C within 8 min for aryl alkenes. A possible catalytic cycle was proposed on the basis of the experimental results and literature reports, with a cobalt hydride complex as an active intermediate. The molecular structure of complexes 1-4 was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano-Micro-Facility (KNMF), Karlsruher Institut für Technologie (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Zhang M, Dong Y, Li Q, Sun H, Li X. Catalytic Properties of [PSiP] Pincer Cobalt(II) Chlorides Supported by Trimethylphosphine for Alkene Hydrosilylation Reactions. Inorg Chem 2024; 63:8807-8815. [PMID: 38688019 DOI: 10.1021/acs.inorgchem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this paper, six silyl [PSiP] pincer cobalt(II) chlorides 1-6 [(2-Ph2PC6H4)2MeSiCo(Cl)(PMe3)] (1), [(2-Ph2PC6H4)2HSiCo(Cl)(PMe3)] (2), [(2-Ph2PC6H4)2PhSiCo(Cl)(PMe3)] (3), [(2-iPr2PC6H4)2HSiCo(Cl)(PMe3)] (4), [(2-iPr2PC6H4)2MeSiCo(Cl)(PMe3)] (5), and [(2-iPr2PC6H4)2PhSiCo(Cl)(PMe3)] (6)) were prepared from the corresponding [PSiP] pincer preligands (L1-L6), CoCl2 and PMe3 by Si-H bond activation. The catalytic activity of complexes 1-6 for alkene hyrdosilylation was studied. It was confirmed that complex 1 is the best catalyst with excellent regioselectivity among the six complexes. Using 1 as the catalyst, the catalytic reaction was completed within 1 h at 50 °C, predominantly affording Markovnikov products for aryl alkenes and anti-Markovnikov products for aliphatic alkene substrates. During the investigation of the catalytic mechanism, the Co(II) hydrides [(2-Ph2PC6H4)2MeSiCo(H)(PMe3)] (8) and [(2-iPr2PC6H4)2MeSiCo(H)(PMe3)] (9) were obtained from the stoichiometric reactions of complex 1 and 5 with NaBHEt3, respectively. Complexes 8 and 9 could also be obtained by the reactions of preligands L1 and L5 with Co(PMe3)4 via Si-H bond cleavage. More experiments corroborated that complex 8 is the real catalyst for this catalytic system. Under the same catalytic conditions as complex 1, using complex 8 as a catalyst, complete conversion of styrene was also achieved in 1 h, and the selectivity remained unchanged. Based on the experimental results, we propose a plausible mechanism for this catalytic reaction. The addition of B(C6F5)3 to catalyst 1 can reverse the selectivity of styrene hydrosilylation from the Markovnikov product as the main product (b/l = 99:1) to the anti-Markovnikov product as the main product (b/l = 40:60). Further study indicated that using the (CoCl2 + L1) system instead of complex 1, the selectivity was changed from Markovnikov to anti-Markovnikov product (b/l = 1:99.7). Therefore, the selectivity for the substrate styrene is influenced by the presence of a PMe3 ligand. The different selectivities may be caused by different active species. For the system of complex 1, a cobalt(II) hydride is the real catalyst, but for the (CoCl2 + L1) system, a cobalt(I) complex is proposed as active species. The molecular structures of Co(II) compounds 5 and 9 were resolved by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Min Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Yanhong Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Qingshuang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
4
|
Liu P, Peng J, Bai Y, Li J. Siloxane-containing phosphine (oxide) ligands for enhanced catalytic activity of cobalt complexes for hydrosilylation reactions. Org Biomol Chem 2024; 22:3304-3313. [PMID: 38578066 DOI: 10.1039/d4ob00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A series of siloxane-containing phosphine (oxide) ligands have been designed and synthesized. These phosphine (oxide) ligands contain silicon atoms, which can impart better solubility in the relevant media, thereby improving certain catalytic performances. The hydrosilylation of olefins catalyzed by these metal phosphine (oxide) complexes has been conducted under mild reaction conditions.
Collapse
Affiliation(s)
- Peng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Denker L, Wullschläger D, Martínez JP, Świerczewski S, Trzaskowski B, Tamm M, Frank R. Cobalt(I)-Catalyzed Transformation of Si–H Bonds: H/D Exchange in Hydrosilanes and Hydrosilylation of Olefins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Lars Denker
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - Daniela Wullschläger
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Stanisław Świerczewski
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
- College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097Warsaw, Poland
| | - Matthias Tamm
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| | - René Frank
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106Braunschweig, Germany
| |
Collapse
|
6
|
Chang ASM, Kawamura KE, Henness HS, Salpino VM, Greene JC, Zakharov LN, Cook AK. (NHC)Ni(0)-Catalyzed Branched-Selective Alkene Hydrosilylation with Secondary and Tertiary Silanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hayden S. Henness
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victor M. Salpino
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jack C. Greene
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
7
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
8
|
Yang H, Chang G, Li X, Sun H, Fuhr O, Fenske D. Synthesis of silyl cobalt hydrides and their catalytic activity on hydrosilylation of alkenes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education Shandong University Jinan China
| | - Guoliang Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education Shandong University Jinan China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education Shandong University Jinan China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education Shandong University Jinan China
| | - Olaf Fuhr
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF) Karlsruher Institut für Technologie (KIT) Eggenstein‐Leopoldshafen Germany
| | - Dieter Fenske
- Institut für Nanotechnologie (INT) und Karlsruher Nano‐Micro‐Facility (KNMF) Karlsruher Institut für Technologie (KIT) Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
9
|
Yang W, Fan Q, Yang H, Sun H, Li X. [P, C] Chelate Cobalt(I)-Catalyzed Distinct Selective Hydrosilylation of Alkenes under Mild Conditions. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Haiquan Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| |
Collapse
|
10
|
Huang W, Lu J, Fan Q, Li X, Hinz A, Sun H. Synthesis of aryl cobalt and iron complexes and their catalytic activity on hydrosilylation of alkenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj06133j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Four aryl Co and Fe complexes, (F4C5N)CoCl(PMe3)3 (1), (F4C5N)Fe(PMe3)4 (2), (F5C6)CoCl(PMe3)3 (3) and (F4C5)FeCl(PMe3)3 (4), were synthesized from the reactions of 3-chloro-2,4,5,6-tetrafluoro-pyridine and chloropentafluorobenzene with Co(PMe3)4 and Fe(PMe3)4, respectively.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Jiahui Lu
- School of Chemsitry and Chemical Engineering, University of Jinan, 250022 Jinan, People's Republic of China
| | - Qingqing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Xiaoyan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| | - Alexander Hinz
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Engesserstr.15, 76131 Karlsruhe, Germany
| | - Hongjian Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China
| |
Collapse
|
11
|
Bories CC, Barbazanges M, Derat E, Petit M. Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cassandre C. Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|