1
|
Liu M, Cui G, Cai X, Yun G, Zeng W, Li J, Zhang J, Tan R, Wang Z, Jiang J. Catechol-Functionalized Covalent Organic Framework: Synthesis, Characterization and Metal-Free Organocatalyst for CO 2 Fixation Under Mild Conditions. Chemistry 2025; 31:e202500654. [PMID: 40192479 DOI: 10.1002/chem.202500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Covalent organic frameworks (COFs) incorporating hydrogen bond donor (HBD) moieties show great promise for heterogeneous catalyst for CO2 cycloaddition. In this work, a catechol-functionalized COF (BL-TF-COF) was constructed via Schiff-base condensation under solvothermal conditions, which was characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), solid-state 13C nuclear magnetic resonance (NMR), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), diffuse reflection spectroscopy (DRS) and cyclic voltammetry (CV). BL-TF-COF presents high crystallinity, large surface area (523 m2 g-1) and remarkable chemical stability, along with abundant hydroxyl functional groups distributed on the pore wall. This framework shows a CO2 adsorption capacity up to 88 mg g-1 at 273 K and 1 bar. The binding locations of the adsorption of CO2 over BL-TF-COF was studied by grand canonical Monte Carlo (GCMC) simulations. BL-TF-COF displays remarkable catalytic performance for the cycloaddition of CO2 with epoxides under mild conditions. Under the condition of the epichlorohydrin/tetrabutylammonium bromide/BL-TF-COF molar ratio of 10210:630:4, the system achieved 62.5% substrate conversion at 25 °C under atmospheric CO2 pressure (1 bar) within 48 h. Mechanistic insights into epoxide adsorption and activation processes were investigated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Minghao Liu
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Guoxin Cui
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Xue Cai
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Guan Yun
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Weiqi Zeng
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Jing Li
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Jinghan Zhang
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Rongxin Tan
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, China
| | - Jian Jiang
- Heilongjiang Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| |
Collapse
|
2
|
Barman S, Das D, Pal K. Non-covalent interactions in molecular architectures and solvent-free catalytic activity towards CO 2 fixation of mononuclear Co(III) complexes installed on modified Schiff base ligands. Dalton Trans 2024; 53:5632-5647. [PMID: 38441234 DOI: 10.1039/d3dt04293f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A set of mononuclear cobalt(III) octahedral complexes {[Co(LH)(acac)] (Co-1H), [Co(LBr)(acac)] (Co-1Br), and [Co(LNO2)(acac)] (Co-1NO2)} were synthesized using new-generation N/O donors, maleonitrile-tethered, tetradentate heteroscorpionate half-reduced Schiff base ligands, 2-((E)-2-hydroxybenzylideneamino)-3-(pyridin-2-ylmethylamino)maleonitrile (H2LH), 2-((E)-(5-bromo-2-hydroxybenzylidene)amino)-3-((pyridin-2-ylmethyl)amino)maleonitrile (H2LBr), and 2-((E)-2-hydroxy-5-nitrobenzylideneamino)-3-(pyridin-2-ylmethylamino)maleonitrile (H2LNO2). All the compounds were well characterized spectroscopically and structurally. The non-covalent interactions present in the lattice of Co-complexes were studied in detail to explain the molecular architecture using the Hirshfeld surface (HS) analysis. The catalytic activity of CO2 fixation towards epoxides under mild and solvent-free conditions was demonstrated. The synthesized complexes are catalysts that are well-active towards the CO2 activation under ambient conditions, whereas most of the reported catalysts require harsh conditions.
Collapse
Affiliation(s)
- Souvik Barman
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Dhiraj Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
3
|
Hsu HF, Liu GL, Su YC, Ko BT. Bimetallic nickel complexes containing imidazole-based phenolate ligands as efficient catalysts for the copolymerization of carbon dioxide with epoxides. Dalton Trans 2023; 53:299-314. [PMID: 38047477 DOI: 10.1039/d3dt03084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The utilization of hexadentate imidazole-derived diamine-bisphenolate ligands to construct structurally well-defined bimetallic nickel catalysts that enable the mediation of the copolymerization of carbon dioxide with alicyclic epoxides was reported for the first time. A series of dinickel carboxylate/nitrophenolate complexes were facilely prepared through a one-pot procedure and their structures were fully determined by single crystal X-ray structural analysis. Dinickel complexes 1-10 were used as single-component catalysts, and were evaluated for the copolymerization of CO2 and cyclohexene oxide (CHO), for which acetato-incorporated complex 1 was proved to exhibit the best activity. Not only has the controllability of binickel catalyst 1 for CO2/CHO copolymerization been demonstrated, but also an "immortal" character for the same polymerization has been realized. Furthermore, detailed kinetic studies of polymerization catalysis of this type were undertaken, and the kinetics results revealed a first-order dependence on both Ni complex 1 and CHO concentrations. This is a successful example of the introduction of the easily accessible nitrogen-heterocycle group, the imidazole moiety, into phenolate ligands for the development of high-performance homogeneous catalysts towards the bimetallic complex-catalyzed copolymerization of CO2 and epoxides.
Collapse
Affiliation(s)
- Han-Fang Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
4
|
Martínez de Sarasa Buchaca M, de la Cruz-Martínez F, Sánchez-Barba LF, Tejeda J, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. One-pot terpolymerization of CHO, CO 2 and L-lactide using chloride indium catalysts. Dalton Trans 2023; 52:3482-3492. [PMID: 36843480 DOI: 10.1039/d3dt00391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Ring-opening copolymerization reactions of epoxides, carbon dioxide and cyclic esters to produce copolymers is a promising strategy to prepare CO2-based polymeric materials. In this contribution, bimetallic chloride indium complexes have been developed as catalysts for the copolymerization processes of cyclohexene oxide, carbon dioxide and L-lactide under mild reaction conditions. The catalysts displayed good catalytic activity and excellent selectivity towards the preparation of poly(cyclohexene carbonate) (PCHC) at one bar CO2 pressure in the absence of a co-catalyst. Additionally, polyester-polycarbonate copolymers poly(lactide-co-cyclohexene carbonate) (PLA-co-PCHC) were obtained via an one-pot one-step route without the use of a co-catalyst. The degree of incorporation of carbon dioxide can be easily modulated by changing the CO2 pressure and the monomer feed, resulting in copolymers with different thermal properties.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Felipe de la Cruz-Martínez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Luis F Sánchez-Barba
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, 28933 Madrid, Spain
| | - Juan Tejeda
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - Ana M Rodríguez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| | - José A Castro-Osma
- Universidad de Castilla-La Mancha, Dpto. de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, 02071-Albacete, Spain.
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologías Químicas and Instituto Regional de Investigación Científica Aplicada-IRICA, 13071-Ciudad Real, Spain.
| |
Collapse
|
5
|
Tsai CY, Huang MC, Lin ML, Su YC, Lin CC. Well-Defined and Highly Effective Nickel Catalysts Coordinated on Tridentate SNO Schiff-Base Derivatives for Alternating Copolymerization of Epoxides and Anhydrides. Inorg Chem 2022; 61:19870-19881. [PMID: 36451620 DOI: 10.1021/acs.inorgchem.2c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A series of Ni complexes supported by SNO Schiff-base derivatives were synthesized in this study. Complex synthesis and characterization data are reported herein. Treatment of the pro-ligands [L1-H = 2-(((2-(methylthio)ethyl)imino)methyl)phenol, L2-H = 2,4-di-tert-butyl-6-(((2-(methylthio)ethyl)imino)methyl)phenol, L3-H = 2-(((2-(methylthio)ethyl)imino)methyl)-4,6-bis(2-phenylpropan-2-yl)phenol, L4-H = 4-bromo-2-(((2-(methylthio)ethyl)imino)methyl)phenol, and L5-H = 4-chloro-2-(((2-(methylthio)ethyl)imino)methyl)phenol] with Ni(OAc)2·4H2O in refluxing ethanol afforded six-coordinate mono-Ni(II) complexes [L2nNi] (n = 1-5). Noteworthy, a heptanuclear nickel(II) octacarboxylate species complex 6 and dinuclear nickel complex 6a resulted from treatment of L6-H [4-fluoro-2-(((2-(methylthio)ethyl)imino)methyl)phenol] with different metal precursors [Ni(OAc)2·4H2O for 6; NiBr2 for 6a] giving a quantitative yield. The reaction of nickel acetate tetrahydrate and L7-H to L9-H [L7-H = 2-methoxy-6-(((2-(methylthio)ethyl)imino)methyl)phenol, L8-H = 5-methoxy-2-(((2-(methylthio)ethyl)imino)methyl)phenol, and L9-H = 4-methoxy-2-(((2-(methylthio)ethyl)imino)methyl)phenol] produced the four-coordinate complexes [L2nNi] (n = 7-9). The highest performing catalyst was complex 3, which was highly efficient for the ring-opening copolymerization of phthalic anhydride (PA) and cyclohexene oxide (CHO) in the presence of a cocatalyst (4-dimethylaminopyridine). In addition, the same copolymerization conditions produced narrowly dispersed polyesters, with high selectivity and polymerization control. In addition to PA-CHO copolymerization, efficient diglycolic anhydride-PA and PA-propene oxide copolymerization was achieved under the same conditions. These catalysts are straightforward to produce and extend the scope of potential substrates.
Collapse
Affiliation(s)
- Chen-Yen Tsai
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Min-Chia Huang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Mei-Ling Lin
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chu-Chieh Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Liu GL, Ko BT. Alternating copolymerization of carbon dioxide with alicyclic epoxides using bimetallic nickel(II) complex catalysts containing benzotriazole-based salen-type derivatives: Catalysis and kinetics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Noba N, Munakata M, Mori T, Kimura M. CO2‐Assisted Stereocontrolled Multi‐component Coupling. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nao Noba
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Miho Munakata
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Takamichi Mori
- Fukushima Kogyo Koto Senmon Gakko Department of Applied Chemistry and Biochemistry JAPAN
| | - Masanari Kimura
- Nagasaki University Graduate School of Engineering Bunkyo 1-14 852-8521 Nagasaki JAPAN
| |
Collapse
|