1
|
Bienenmann RL, Asundi AS, Lutz M, Sarangi R, Broere DLJ. Chloride, Alkoxide, or Silicon: The Bridging Ligand Dictates the Spin State in Dicobalt Expanded Pincer Complexes. Organometallics 2025; 44:94-104. [PMID: 39822180 PMCID: PMC11734127 DOI: 10.1021/acs.organomet.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the tBuPNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl2(tetrahydrofuran)1.5 yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand. Reacting either of the high-spin complexes with excess diethyl silane affords a low-spin dicobalt complex containing two unusual bridging Si-based ligands. These complexes were investigated using NMR spectroscopy, XAS, single crystal X-ray structure determination, and computational methods, showing that the Si-based ligands are best described as base-stabilized silylenes.
Collapse
Affiliation(s)
- Roel L.
M. Bienenmann
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arun S. Asundi
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Martin Lutz
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of
Science, Utrecht University, Universiteitsweg
99, 3584 CG Utrecht, The Netherlands
| | - Ritimukta Sarangi
- Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Daniël L. J. Broere
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
2
|
Rybak CJ, Fan C, Sharma P, Uyeda C. Dinickel-Catalyzed N=N Coupling Reactions for the Synthesis of Hindered Azoarenes. J Am Chem Soc 2024; 146:29720-29727. [PMID: 39419083 DOI: 10.1021/jacs.4c11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Azoarenes are the largest class of photoswitching molecules, and they have a broad range of applications in photopharmacology and materials science. Azoarenes possessing ortho-substitution often display improved properties, including isomerization under visible light irradiation, near-quantitative switching, and long thermal half-lives in the cis form. The synthesis of hindered ortho-substituted azoarenes is often low-yielding using established oxidative or reductive coupling methods. Here, we describe the design and synthesis of a new dinickel complex that catalyzes the dimerization of ortho-substituted aryl azides in high yield. Applications of this method in the synthesis of high-performance photoswitches, photoactive peptide cross-linkers, hindered diazocines, and main-chain azoarene polymers are described.
Collapse
Affiliation(s)
- Christopher J Rybak
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Chengyi Fan
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Parijat Sharma
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Bienenmann RLM, Loyo AO, Lutz M, Broere DLJ. Mechanistic Investigation into Copper(I) Hydride Catalyzed Formic Acid Dehydrogenation. ACS Catal 2024; 14:15599-15608. [PMID: 39444528 PMCID: PMC11494502 DOI: 10.1021/acscatal.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Copper(I) hydride complexes are typically known to react with CO2 to form their corresponding copper formate counterparts. However, recently it has been observed that some multinuclear copper hydrides can feature the opposite reactivity and catalyze the dehydrogenation of formic acid. Here we report the use of a multinuclear PNNP copper hydride complex as an active (pre)catalyst for this reaction. Mechanistic investigations provide insights into the catalyst resting state and the rate-determining step and identify an off-cycle species that is responsible for the unexpected substrate inhibition in this reaction.
Collapse
Affiliation(s)
- Roel L. M. Bienenmann
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Anne Olarte Loyo
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin Lutz
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of
Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Daniël L. J. Broere
- Organic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry,
Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Rumi SP, Zakharov LN, Desnoyer AN. A twist on a classic scaffold: rational design of a new bimetallic platform. Dalton Trans 2024. [PMID: 39102063 DOI: 10.1039/d4dt01840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Herein, we report the synthesis of a modular family of novel bimetallic tetraamidodiamine (tada) ligands, Li4-R-tada (R = Me3Si, tBuMe2Si, and iPr3Si). These silylamido ligands display two distinct binding pockets whose steric profiles can be easily tuned by choice of the substituents on silicon. We also show that salt metathesis is a convenient route to install these new ligands on the early transition metals titanium(IV) and vanadium(III).
Collapse
Affiliation(s)
- Sultana P Rumi
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.
| | - Addison N Desnoyer
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
5
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
6
|
Abaeva M, Ieritano C, Hopkins WS, Schipper DJ. Unsymmetrical Imidazopyrimidine-Based Ligand and Bimetallic Complexes. Inorg Chem 2024; 63:1010-1019. [PMID: 38055895 DOI: 10.1021/acs.inorgchem.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
With bimetallic catalysts becoming increasingly important, the development of electronically and structurally diverse binucleating ligands is desired. This work describes the synthesis of unsymmetric ligand 2,7-di(pyridin-2-yl)imidazo[1,2-a]pyrimidine (dpip) that is achieved in four steps on a multigram scale in an overall 54% yield. The ability of dpip to act as a scaffold for the formation of bimetallic complexes is demonstrated with the one-step syntheses of the dicopper complex [Cu2(dpip)(μ-OH)(CF3COO)3] (4), the dipalladium complex [Pd2(dpip)(μ-OH)(CF3COO)2](CF3COO)·CF3COOH (5), and the dimeric dinickel complex [Ni4(dpip)2(μ-Cl)4Cl2MeOH6][2Cl] (6) in good yields (79-92%). All bimetallic complexes were characterized by spectroscopic methods and X-ray crystallography, which revealed metal-metal distances between 3.4821(9) and 4.106(2) Å. Additionally, quantum chemical calculations were conducted on complex 4 and an analogous 1,8-naphthyridine-based dicopper complex to investigate the differences between the imidazopyrimidine motif reported here and the widely used 1,8-naphthyridine motif. Natural bonding orbital (NBO) and Mayer bond order (MBO) analyses validated the ability of dpip to coordinate metals more strongly. Finally, NBO calculations quantified the differences in the binding energy between the two pockets of the unsymmetrical dpip ligand.
Collapse
Affiliation(s)
- Mila Abaeva
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Derek J Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Delaney AR, Kroeger AA, Coote ML, Colebatch AL. Oxidative Addition and β-Hydride Elimination by a Macrocyclic Dinickel Complex: Observing Bimetallic Elementary Reactions. Chemistry 2023; 29:e202302366. [PMID: 37641804 DOI: 10.1002/chem.202302366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The dinickel(I) complex Ni2 (tBu PONNOPONNO), featuring a planar macrocyclic diphosphoranide ligand tBu PONNOPONNO, offers a unique architectural platform for observing bimetallic elementary reactions. Oxidative addition reactions of alkyl halides produce dinickel(II) complexes of the type Ni2 (μ-R)(μ-X)(tBu PONNOPONNO). However, when R=Et β-hydride elimination is observed to form a dinickel monohydride, with the rate dependent on the nature of X. DFT studies suggest a new mechanism for bimetallic β-hydride elimination, where the rate dependence arises from the steric pressure imposed by the X group on the opposing trans face of the dinickel macrocycle. This work enhances understanding of bimetallic elementary reactions, particularly β-hydride elimination, which have not been well-explored for dinuclear systems.
Collapse
Affiliation(s)
- Andie R Delaney
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Asja A Kroeger
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia, 5042, Australia
| | - Annie L Colebatch
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|