1
|
Dusunge A, Leahy DK, Handa S. AshPhos Ligand: Facilitating Challenging Aminations in Five- and Six-Membered Heteroaryl Halides Using Cyclic Secondary and Bulky Amines. JACS AU 2025; 5:91-98. [PMID: 39886567 PMCID: PMC11775683 DOI: 10.1021/jacsau.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025]
Abstract
Our newly developed AshPhos ligand represents a significant advancement in Buchwald-Hartwig aminations, overcoming many limitations of existing ligands. Created from affordable and accessible materials, AshPhos enhances catalytic performance, especially for extremely difficult substrates, by emphasizing the principles of ligand chelation and cooperativity. Its successful synthesis and application in catalytic aminations underscore its potential for use in the sustainable synthesis of compounds important to medicinal chemistry, materials, and energy. Further studies validated AshPhos's effectiveness in coupling challenging heteroaryl bromides and chlorides with various amines, including hindered amines and those with multiple heteroatoms. Slightly elevated temperatures were essential to avoid forming inactive species, ensuring consistent catalytic turnover. A control nuclear magnetic resonance spectroscopy study suggests the formation of catalytically dormant species or deligation of AshPhos from palladium at room temperature due to the coordination of multiple substrate molecules with the palladium species. Analyses showed cost-effectiveness of AshPhos, making it a significant advancement in catalytic amination for more efficient and sustainable chemical processes. The diverse substrate scope, covering challenging coupling partners and forming over 55 substrates in good-to-excellent yields, further demonstrated the efficiency of AshPhos.
Collapse
Affiliation(s)
- Ashish Dusunge
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - David K. Leahy
- Biohaven
Pharmaceuticals, 215 Church Street, New Haven, Connecticut 06510, United States
| | - Sachin Handa
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Semeniuchenko V, Sharif S, Rana N, Chandrasoma N, Braje WM, Baker RT, Manthorpe JM, Pietro WJ, Organ MG. Experimental Evidence for Zerovalent Pd(NHC) as a Competent Catalyst in C-N Cross-Coupling (NHC = DiMeIHept Cl). J Am Chem Soc 2024; 146:29224-29236. [PMID: 39388666 DOI: 10.1021/jacs.4c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Use of the branched N-heterocyclic carbene (NHC) ligand 1,3-bis(2,6-bis(3-methyl-1-(2-methylpropyl)butyl)phenyl)-4,5-dichloro-1,3-dihydro-2H-imidazole-2-ylidene (DiMeIHeptCl) facilitated the stabilization of several relevant intermediates for Pd(NHC)-catalyzed C-N cross-coupling reactions. Complexes [Pd(DiMeIHeptCl)]2(μ-N2), [Pd(DiMeIHeptCl)]2(μ-η2-1,2-η2-4,5-C6H6), and Pd(DiMeIHeptCl)(pyridine), representing zerovalent Pd(NHC) bearing labile ligands, were isolated and structurally characterized, along with divalent PdCl(Ph)(DiMeIHeptCl) and PdCl(Ph)(DiMeIHeptCl)(n-propylamine). The former is a 14-electron Pd complex, which is stable under air and chromatography on silica gel or neutral alumina. One possible reason for this exceptional stability is the numerous dispersion interactions between the NHC alkyl chains and the Pd-Ph group. Detailed investigations of catalyst activation and oxidative addition confirmed that "Pd(NHC)" is formed from many known Pd(II)(NHC) precatalysts and provided activation rates for these different precatalysts.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- NMR Core Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sepideh Sharif
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Neha Rana
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Nalin Chandrasoma
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, Ludwigshafen 67061, Germany
| | - R Tom Baker
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - William J Pietro
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Reichert EC, Feng K, Sather AC, Buchwald SL. Pd-Catalyzed Amination of Base-Sensitive Five-Membered Heteroaryl Halides with Aliphatic Amines. J Am Chem Soc 2023; 145:3323-3329. [PMID: 36719903 PMCID: PMC9988406 DOI: 10.1021/jacs.2c13520] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report a versatile and functional-group-tolerant method for the Pd-catalyzed C-N cross-coupling of five-membered heteroaryl halides with primary and secondary amines, an important but underexplored transformation. Coupling reactions of challenging, pharmaceutically relevant heteroarenes, such as 2-H-1,3-azoles, are reported in good-to-excellent yields. High-yielding coupling reactions of a wide set of five-membered heteroaryl halides with sterically demanding α-branched cyclic amines and acyclic secondary amines are reported for the first time. The key to the broad applicability of this method is the synergistic combination of (1) the moderate-strength base NaOTMS, which limits base-mediated decomposition of sensitive five-membered heteroarenes that ultimately leads to catalyst deactivation, and (2) the use of a GPhos-supported Pd catalyst, which effectively resists heteroarene-induced catalyst deactivation while promoting efficient coupling, even for challenging and sterically demanding amines. Cross-coupling reactions between a wide variety of five-membered heteroaryl halides and amines are demonstrated, including eight examples involving densely functionalized medicinal chemistry building blocks.
Collapse
Affiliation(s)
- Elaine C Reichert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kaibo Feng
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Aaron C Sather
- Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Eckert P, Organ MG. Impact of N‐Aryl‐ and NHC Core‐Substituents on the Coupling of Alkylzinc Nucleophiles: Is Bigger always Better? Chemistry 2022; 28:e202200665. [DOI: 10.1002/chem.202200665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Philip Eckert
- Centre for Catalysis Research and Innovation (CCRI) Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario, K1N6N5 Canada
| | - Michael G. Organ
- Centre for Catalysis Research and Innovation (CCRI) Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario, K1N6N5 Canada
| |
Collapse
|
5
|
Hsu Y, Chen M. N‐Heterocyclic Carbene Palladium(II) Amine Complexes: The Role of Primary Aryl‐ or Alkylamine Binding and Applications in the Buchwald‐Hartwig Amination Reaction. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Cheng Hsu
- Department of Applied Chemistry Providence University Taichung 43301 Taiwan, ROC
- 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| | - Ming‐Tsz Chen
- Department of Applied Chemistry Providence University Taichung 43301 Taiwan, ROC
- 200, Sec. 7, Taiwan Boulevard, Shalu Dist. Taichung City 43301 Taiwan
| |
Collapse
|
6
|
Li DH, Lan XB, Song AX, Rahman MM, Xu C, Huang FD, Szostak R, Szostak M, Liu FS. Buchwald-Hartwig Amination of Coordinating Heterocycles Enabled by Large-but-Flexible Pd-BIAN-NHC Catalysts*. Chemistry 2021; 28:e202103341. [PMID: 34773313 DOI: 10.1002/chem.202103341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 01/21/2023]
Abstract
A new class of large-but-flexible Pd-BIAN-NHC catalysts (BIAN=acenaphthoimidazolylidene, NHC=N-heterocyclic carbene) has been rationally designed to enable the challenging Buchwald-Hartwig amination of coordinating heterocycles. This robust class of BIAN-NHC catalysts permits cross-coupling under practical aerobic conditions of a variety of heterocycles with aryl, alkyl, and heteroarylamines, including historically challenging oxazoles and thiazoles as well as electron-deficient heterocycles containing multiple heteroatoms with BIAN-INon (N,N'-bis(2,6-di(4-heptyl)phenyl)-7H-acenaphtho[1,2-d]imidazol-8-ylidene) as the most effective ligand. Studies on the ligand structure and electronic properties of the carbene center are reported. The study should facilitate the discovery of even more active catalyst systems based on the unique BIAN-NHC scaffold.
Collapse
Affiliation(s)
- Dong-Hui Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan Province 423000, P. R. China
| | - A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Fei-Dong Huang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw, 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong, 528458, P. R. China
| |
Collapse
|
7
|
Semeniuchenko V, Ovens JS, Braje WM, Organ MG. NaBHT Generated In Situ from BHT and NaO tBu: Crystallographic Characterization and Applications in Buchwald–Hartwig Amination. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Jeffrey S. Ovens
- X-Ray Core Facility, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wilfried M. Braje
- Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael G. Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
8
|
Semeniuchenko V, Braje WM, Organ MG. Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Eco-Friendly Base for Solvent-Free, Pd-Catalysed Amination. Chemistry 2021; 27:12535-12539. [PMID: 34190367 DOI: 10.1002/chem.202101617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/02/2023]
Abstract
NaBHT (sodium 2,6-di-tert-butyl-4-methylphenolate), a strong, but hindered and lipophilic base, has been effectively paired with similarly lipophilic, high-reactivity Pd-NHC (N-heterocyclic carbene) catalysts to produce an ideal combination for performing solvent-free (melt) cross-coupling amination. The mild nucleophilicity of NaBHT, coupled with the anti-oxidant properties of its conjugate acid byproduct, BHT means the process seems to have no functional group incompatibilities. Highly effective coupling of base-sensitive and redox-active functional groups was observed in all cases with only 0.1-0.2 mol percent catalyst. Comparisons using the standard base for this reaction, KOtBu, led to poor couplings or complete degradation in most applications - only NaBHT works.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
9
|
Semeniuchenko V, Sharif S, Day J, Chandrasoma N, Pietro WJ, Manthorpe J, Braje WM, Organ MG. (DiMeIHept Cl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. J Org Chem 2021; 86:10343-10359. [PMID: 34254799 DOI: 10.1021/acs.joc.1c01057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(DiMeIHeptCl)Pd, a hyper-branched N-aryl Pd NHC catalyst, has been shown to be efficient at performing amine arylation reactions in solvent-free ("melt") conditions. The highly lipophilic environment of the alkyl chains flanking the Pd center serves as lubricant to allow the complex to navigate through the paste-like environment of these mixtures. The protocol can be used on a multi-gram scale to make a variety of aniline derivatives, including substrates containing alcohol moieties.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sepideh Sharif
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Jonathan Day
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Nalin Chandrasoma
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - William J Pietro
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jeffrey Manthorpe
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
10
|
Ouyang JS, Liu S, Pan B, Zhang Y, Liang H, Chen B, He X, Chan WTK, Chan ASC, Sun TY, Wu YD, Qiu L. A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jia-Sheng Ouyang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bendu Pan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Hao Liang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Bin Chen
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Xiaobo He
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Albert S. C. Chan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liqin Qiu
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|
11
|
Wang Z, Xie P, Xu Y, Hong X, Shi S. Low‐Temperature Nickel‐Catalyzed C−N Cross‐Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral
N
‐Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Chao Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xin Hong
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
12
|
Wang ZC, Xie PP, Xu Y, Hong X, Shi SL. Low-Temperature Nickel-Catalyzed C-N Cross-Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral N-Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021; 60:16077-16084. [PMID: 33901337 DOI: 10.1002/anie.202103803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/14/2022]
Abstract
The transition-metal-catalyzed C-N cross-coupling has revolutionized the construction of amines. Despite the innovations of multiple generations of ligands to modulate the reactivity of the metal center, ligands for the low-temperature enantioselective amination of aryl halides remain a coveted target of catalyst engineering. Designs that promote one elementary reaction often create bottlenecks at other steps. We here report an unprecedented low-temperature (as low as -50 °C), enantioselective Ni-catalyzed C-N cross-coupling of aryl chlorides with sterically hindered secondary amines via a kinetic resolution process (s factor up to >300). A bulky yet flexible chiral N-heterocyclic carbene (NHC) ligand is leveraged to drive both oxidative addition and reductive elimination with low barriers and control the enantioselectivity. Computational studies indicate that the rotations of multiple σ-bonds on the C2 -symmetric chiral ligand adapt to the changing needs of catalytic processes. We expect this design would be widely applicable to diverse transition states to achieve other challenging metal-catalyzed asymmetric cross-coupling reactions.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
13
|
Song AX, Zeng XX, Ma BB, Xu C, Liu FS. Direct (Hetero)arylation of Heteroarenes Catalyzed by Unsymmetrical Pd-PEPPSI-NHC Complexes under Mild Conditions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A-Xiang Song
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Xiao-Xiao Zeng
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Bei-Bei Ma
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, People’s Republic of China
| |
Collapse
|
14
|
Modak A, Nett AJ, Swift EC, Haibach MC, Chan VS, Franczyk TS, Shekhar S, Cook SP. Cu-Catalyzed C–N Coupling with Sterically Hindered Partners. ACS Catal 2020; 10:10495-10499. [PMID: 37063689 PMCID: PMC10104551 DOI: 10.1021/acscatal.0c02965] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Copper, an earth-abundant metal, has reemerged as a viable alternative to the versatile Pd-catalyzed C-N coupling. Coupling sterically hindered reaction partners, however, remains challenging. Herein, we disclose the discovery and development of a pyrrole-ol ligand to facilitate the coupling of ortho-substituted aryl iodides with sterically hindered amines. The ligand was discovered through a library screening approach and highlights the value of mining heteroatom-rich pharmaceutical libraries for useful ligand motifs. Further evaluation revealed that this ligand is uniquely effective in these challenging transformations. The reaction enables the coupling of sterically hindered primary and secondary amines, anilines, and amides with broad functional group tolerance.
Collapse
Affiliation(s)
- Atanu Modak
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Alex J. Nett
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Elizabeth C. Swift
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Vincent S. Chan
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Thaddeus S. Franczyk
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Silas P. Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
15
|
Lu HY, Shen A, Li YQ, Hu YC, Ni C, Cao YC. N-heterocyclic carbene-palladium-imine complex catalyzed α-arylation of ketones with aryl and heteroaryl chlorides under air atmosphere. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Eckert P, Organ MG. A Path to More Sustainable Catalysis: The Critical Role of LiBr in Avoiding Catalyst Death and its Impact on Cross‐Coupling. Chemistry 2020; 26:4861-4865. [DOI: 10.1002/chem.202000288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Philip Eckert
- Centre for Catalysis Research and Innovation (CCRI) and Department of Chemistry and Biomolecular SciencesUniversity of Ottawa Ottawa K1N6N5 Canada
| | - Michael G. Organ
- Centre for Catalysis Research and Innovation (CCRI) and Department of Chemistry and Biomolecular SciencesUniversity of Ottawa Ottawa K1N6N5 Canada
| |
Collapse
|
17
|
Rama RJ, Maya C, Nicasio MC. Dialkylterphenyl Phosphine-Based Palladium Precatalysts for Efficient Aryl Amination of N-Nucleophiles. Chemistry 2020; 26:1064-1073. [PMID: 31743505 DOI: 10.1002/chem.201903279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/21/2023]
Abstract
A series of 2-aminobiphenyl palladacycles supported by dialkylterphenyl phosphines, PR2 Ar' (R=Me, Et, iPr, Cyp (cyclopentyl), Ar'=ArDipp2 , ArXyl2f , Dipp (2,6-C6H3-(2,6-C6H3-(CHMe2)2)2), Xyl=xylyl) have been prepared and structurally characterized. Neutral palladacycles were obtained with less bulky terphenyl phosphines (i.e., Me and Et substituents) whereas the largest phosphines provided cationic palladacycles in which the phosphines adopted a bidentate hemilabile k1 -P,η1 -Carene coordination mode. The influence of the ligand structure on the catalytic performance of these Pd precatalysts was evaluated in aryl amination reactions. Cationic complexes bearing the phosphines PiPr2 ArXyl2 and PCyp2 ArXyl2 were the most active of the series. These precatalysts have demonstrated a high versatility and efficiency in the coupling of a variety of nitrogen nucleophiles, including secondary amines, alkyl amines, anilines, and indoles, with electronically deactivated and ortho-substituted aryl chlorides at low catalyst loadings (0.25-0.75 mol % Pd) and without excess ligand.
Collapse
Affiliation(s)
- Raquel J Rama
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071, Sevilla, Spain
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and, Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - M Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071, Sevilla, Spain
| |
Collapse
|
18
|
Larsen MA, Hennessy ET, Deem MC, Lam YH, Saurí J, Sather AC. A Modular and Diastereoselective 5 + 1 Cyclization Approach to N-(Hetero)Aryl Piperidines. J Am Chem Soc 2019; 142:726-732. [DOI: 10.1021/jacs.9b13114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthew A. Larsen
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Elisabeth T. Hennessy
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Madeleine C. Deem
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Yu-hong Lam
- Computational and Structural Chemistry, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Josep Saurí
- Analytical Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Aaron C. Sather
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Sather AC, Martinot TA. Data-Rich Experimentation Enables Palladium-Catalyzed Couplings of Piperidines and Five-Membered (Hetero)aromatic Electrophiles. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aaron C. Sather
- Process Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Theodore A. Martinot
- Process Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Sinha N, Heijnen D, Feringa BL, Organ MG. Murahashi Cross-Coupling at -78 °C: A One-Pot Procedure for Sequential C-C/C-C, C-C/C-N, and C-C/C-S Cross-Coupling of Bromo-Chloro-Arenes. Chemistry 2019; 25:9180-9184. [PMID: 31232486 DOI: 10.1002/chem.201901678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Indexed: 01/02/2023]
Abstract
The coupling of organolithium reagents, including strongly hindered examples, at cryogenic temperatures (as low as -78 °C) has been achieved with high-reactivity Pd-NHC catalysts. A temperature-dependent chemoselectivity trigger has been developed for the selective coupling of aryl bromides in the presence of chlorides. Building on this, a one-pot, sequential coupling strategy is presented for the rapid construction of advanced building blocks. Importantly, one-shot addition of alkyllithium compounds to Pd cross-coupling reactions has been achieved, eliminating the need for slow addition by syringe pump.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada.,Centre for Catalysis Research and Innovation (CCRI) and Department of, Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| | - Dorus Heijnen
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Michael G Organ
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J1P3, Canada.,Centre for Catalysis Research and Innovation (CCRI) and Department of, Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
| |
Collapse
|
21
|
Beutner GL, Coombs JR, Green RA, Inankur B, Lin D, Qiu J, Roberts F, Simmons EM, Wisniewski SR. Palladium-Catalyzed Amidation and Amination of (Hetero)aryl Chlorides under Homogeneous Conditions Enabled by a Soluble DBU/NaTFA Dual-Base System. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gregory L. Beutner
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John R. Coombs
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rebecca A. Green
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bahar Inankur
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dong Lin
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jun Qiu
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Frederick Roberts
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Steven R. Wisniewski
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
22
|
Sinha N, Champagne PA, Rodriguez MJ, Lu Y, Kopach ME, Mitchell D, Organ MG. One-Pot Sequential Kumada-Tamao-Corriu Couplings of (Hetero)Aryl Polyhalides in the Presence of Grignard-Sensitive Functional Groups Using Pd-PEPPSI-IPent Cl. Chemistry 2019; 25:6508-6512. [PMID: 30972856 DOI: 10.1002/chem.201901150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/10/2022]
Abstract
We report a general and rapid chemoselective Kumada-Tamao-Corriu (KTC) cross-coupling of aryl bromides in the presence of chlorides or triflates with functionalized Grignard reagents at 0 °C in 15 min by using Pd-PEPPSI-IPentCl (C4). Nucleophiles and electrophiles (or both) can contain Grignard-sensitive functional groups (-CN, -COOR, etc.). Control experiments together with DFT calculations suggest that transmetallation is rate limiting for the selective cross-coupling of Br in the presence of Cl/OTf with functionalized Grignard reagents. One-pot sequential KTC/KTC cross-couplings with bromo-chloro arenes have been demonstrated for the first time. We also report the one-pot sequential KTC/Negishi cross-couplings using C4 showcasing the versatility of this methodology.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.,Centre for Catalysis Research and Innovation (CCRI), and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Pier Alexandre Champagne
- Centre for Catalysis Research and Innovation (CCRI), and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | | | - Yu Lu
- Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | | | - David Mitchell
- Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Michael G Organ
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.,Centre for Catalysis Research and Innovation (CCRI), and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
23
|
Chen M, Wang W, Li Y. N‐heterocyclic carbene–palladium complexes for Suzuki–Miyaura coupling reaction with benzyl chloride and aromatic boronic acid leading to diarylmethanes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Tsz Chen
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan, Republic of China
| | - Wan‐Rong Wang
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan, Republic of China
| | - Yi‐Jun Li
- Department of Applied ChemistryProvidence University Taichung 43301 Taiwan, Republic of China
| |
Collapse
|
24
|
Zhang FY, Lan XB, Xu C, Yao HG, Li T, Liu FS. Rigid hindered N-heterocyclic carbene palladium precatalysts: synthesis, characterization and catalytic amination. Org Chem Front 2019. [DOI: 10.1039/c9qo00726a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rigid hindered N-heterocyclic carbene palladium complexes have been developed and exhibited high activities for a variety of (hetero)aryl chlorides with (hetero)anilines and amines under aerobic conditions.
Collapse
Affiliation(s)
- Fei-Yi Zhang
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Xiao-Bing Lan
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Chang Xu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Hua-Gang Yao
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Tian Li
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering
- Guangdong Pharmaceutical University
- Zhongshan
- China
| |
Collapse
|
25
|
Huang FD, Xu C, Lu DD, Shen DS, Li T, Liu FS. Pd-PEPPSI-IPentAn Promoted Deactivated Amination of Aryl Chlorides with Amines under Aerobic Conditions. J Org Chem 2018; 83:9144-9155. [DOI: 10.1021/acs.joc.8b01205] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fei-Dong Huang
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Dong Lu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Dong-Sheng Shen
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Tian Li
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| | - Feng-Shou Liu
- School of Chemistry and Chemical Engineering, Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, China
| |
Collapse
|