1
|
O'Reilly A, Haynes MD, Turner ZR, McMullin CL, Harder S, O'Hare D, Fulton JR, Coles MP. Mixing and matching N, N- and N, O-chelates in anionic Mg(I) compounds: synthesis and reactivity with RNCNR and CO. Chem Commun (Camb) 2024; 60:7204-7207. [PMID: 38910507 DOI: 10.1039/d4cc02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.
Collapse
Affiliation(s)
- Andrea O'Reilly
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Matthew D Haynes
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Zoë R Turner
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | | | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - J Robin Fulton
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand.
| |
Collapse
|
2
|
Chan K, Ying F, He D, Yang L, Zhao Y, Xie J, Su JH, Wu B, Yang XJ. One-Electron (2c/1e) Tin···Tin Bond Stabilized by ortho-Phenylenediamido Ligands. J Am Chem Soc 2024; 146:2333-2338. [PMID: 38241610 DOI: 10.1021/jacs.3c11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Odd-electron bonds, i.e., the two-center, three-electron (2c/3e), or one-electron (2c/1e) bonds, have attracted tremendous interest owing to their novel bonding nature and radical properties. Herein, complex [K(THF)6][LSn:···Sn:L] (1), featuring the first and unsupported 2c/1e Sn···Sn σ-bond with a long distance (3.2155(9) Å), was synthesized by reduction of stannylene [LSn:] (L = N,N-dpp-o-phenylene diamide) with KC8. The one-electron Sn-Sn bond in 1 was confirmed by the crystal structure, DFT calculations, EPR spectroscopy, and reactivity studies. This compound can be viewed as a stabilized radical by delocalizing to two metal centers and can readily mediate radical reactions such as C-C coupling of benzaldehyde.
Collapse
Affiliation(s)
- Kaiyip Chan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fei Ying
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Dongyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Li Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
3
|
Imagawa T, Okazawa K, Yoshizawa K, Yoshida H, Shang R, Yamamoto Y, Nakamoto M. Complexation-Triggered Fluctuation of π-Conjugation on an Antiaromatic Dicyanoanthracene Dianion. Chemistry 2023:e202302550. [PMID: 37643995 DOI: 10.1002/chem.202302550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
The formation of Lewis pairs is an important chemical concept. Recently, the complexation of Lewis acidic tris(pentafluorophenyl)borane with Lewis basic moieties and subsequent reduction has emerged as a fascinating strategy for designing novel reactions and structures. The impact of the complexation and subsequent reduction of antiaromatic systems bearing Lewis base moieties has been investigated. We found how Lewis adduct formation stabilizes an antiaromatic system consisting of 9,10-dicyanoanthracene and tris(pentafluorophenyl)borane by using synthesis, X-ray crystallography, spectroscopic analysis, and quantum chemical calculations.
Collapse
Affiliation(s)
- Taiki Imagawa
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Kazuki Okazawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroto Yoshida
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Yohsuke Yamamoto
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| | - Masaaki Nakamoto
- Department of Chemistry, Graduate School of Advanced Engineering and Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi, Hiroshima, 739-8526, Japan
| |
Collapse
|
4
|
Xue Y, Wang J, Shi Y, Xu W, Zhao Y, Wu B, Yang XJ. Assembly of metallo-macrocycles through reductive C-C coupling of alkylnitriles by an Mg-Mg-bonded compound. Dalton Trans 2022; 51:4394-4399. [PMID: 35194625 DOI: 10.1039/d2dt00181k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low-valent metal complexes have attracted much research interest owing to their novel reactivities toward small molecules. Herein the reactivity of the α-diimine-ligated, Mg-Mg-bonded compound [K(THF)3]2[LMg-MgL] (1, L = [(2,6-iPr2C6H3)NC(Me)]22-) with aliphatic nitriles has been studied. Complex 1 readily activates n-alkylnitriles (RCN; R = propyl, butyl, and pentyl) to afford the unique trinuclear magnesium metallo-macrocyclic complexes, [LMg(μ-{(NC-C(R)C(CH2R)-NH})]3[K3(Solv)6] (2-4: R = -(CH2)nCH3, n = 2, 3, or 4; Solv = THF/DME), through a reductive deprotonation of the α-H of one nitrile molecule and C-C coupling between this α-carbon and the cyanide (CN) group of another nitrile, followed by a 1,3-H shift. The results demonstrate the possibility of assembling supramolecular architectures based on the α-diimine [LMg] fragment through small molecule activation.
Collapse
Affiliation(s)
- Yujie Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Jijiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yalei Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.,Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
5
|
Li Y, Gong Y. Nitrile formation via dichlorocarbene insertion into the Si–N bond of Ln( iii) bis(trimethylsilyl)amide complexes. Chem Commun (Camb) 2022; 58:12552-12555. [DOI: 10.1039/d2cc04538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of bis(trimethylsilyl)amino lanthanides and chloroform unprecedently generate the Me3SiCN complexes where the nitrile ligand is formed via insertion of dichlorocarbene into the Si–N bond of the lanthanide precursor.
Collapse
Affiliation(s)
- Yangjuan Li
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yu Gong
- Department of Radiochemistry, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
6
|
Lv ZJ, Zhu M, Liu W, Chai Z, Wei J, Zhang WX. Reactivity of Lutetacyclopropene toward Benzyl, Benzoyl, and Trimethylsilyl Nitriles Affording Diversified Lutetium Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Zhang R, Wang Y, Zhao Y, Redshaw C, Fedushkin IL, Wu B, Yang XJ. Main-group metal complexes of α-diimine ligands: structure, bonding and reactivity. Dalton Trans 2021; 50:13634-13650. [PMID: 34519747 DOI: 10.1039/d1dt02120f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Diimine ligands, in particular 1,4-diazabutadiene (dad) and bis(iminoacenaphthene) (bian) derivatives, have been widely used for coordination with various metals, including main-group, transition, and lanthanide and actinide metals. In addition to their tunable steric and electronic properties, the dad and bian ligands are redox-active and can readily accept one or two electrons, converting into the radical-anionic (L˙-) or dianionic (enediamido, L2-) form, respectively. This non-innocence brings about rich electronic structures and properties of the ligands and complexes thereof. For example, the dad ligands in their three redox levels can effectively stabilize a series of metal centers in different oxidation states, including low-valent metals. Moreover, these ligands can serve as electron reservoirs and can participate in reactions toward other molecules with or without metals. Therefore, such ligands are extremely useful in the areas of low-valent complexes and small molecule activation. Herein, we will discuss the use of dad (and bian) ligands in the stabilization of metal-metal-bonded compounds, in particular those of main-group metals, as well as small molecule activation by these (low-valent) metal coordination species where the non-innocence of the ligands plays a key role.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanchao Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yanxia Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Carl Redshaw
- Plastics Collaboratory, Department of Chemistry, University of Hull, Cottingham Road, Hull, UK
| | - Igor L Fedushkin
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.,G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 603950 Nizhny Novgorod, Tropinina str. 49, Russian Federation
| | - Biao Wu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China. .,College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
Chen W, Liu L, Zhao Y, Xue Y, Xu W, Li N, Wu B, Yang XJ. Organometallo-macrocycle assembled through dialumane-mediated C-H activation of pyridines. Chem Commun (Camb) 2021; 57:6268-6271. [PMID: 34075952 DOI: 10.1039/d1cc00318f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dialumane 1 reacts with pyridines at elevated temperatures through regioselective reductive dehydrogenation of 4-H, affording a unique hexanuclear Al(iii) macrocycle [{LAl(pyridyl)}6], which represents the first dialumane-mediated C-H activation of Py and may suggest a new approach toward organometallo supra-molecules by one-pot small molecule activation and self-assembly.
Collapse
Affiliation(s)
- Weixing Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Li Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Yujie Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Nan Li
- State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China. and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China. and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Obi AD, Freeman LA, Dickie DA, Gilliard RJ. N-Heterocyclic Carbene-Mediated Ring Opening of Reduced Diazamagnesacycles. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Akachukwu D. Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Lucas A. Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J. Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, PO Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
Dodonov VA, Xiao L, Kushnerova OA, Baranov EV, Zhao Y, Yang XJ, Fedushkin IL. Transformation of carbodiimides to guanidine derivatives facilitated by gallylenes. Chem Commun (Camb) 2020; 56:7475-7478. [PMID: 32496503 DOI: 10.1039/d0cc03270k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The reductive coupling of carbodiimides RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = 2,6-iPr2C6H3, Cy, iPr) by using [(dpp-bian)GaNa(dme)2] (1); [(dpp-dad)GaNa(thf)3] (2a) and [(dpp-dad)GaK(thf)4Ga(dpp-dad)][K(thf)6] (2b) led to the guanidinate derivatives [(dpp-bian)Ga(NCy)2C[double bond, length as m-dash]NCy][Na(thf)2] (3); [LGaN(R)C(RN)N(R)C(RN)][M] L = dpp-bian, M = Na(dme)2, R = iPr, (4a); L = dpp-dad, M = Na(thf)3, R = iPr, (4b); R = Cy, (4c); M = K(thf)4, (4d); L = dpp-bian, M = Na(dme)2, R = Cy, (4e) and [(dpp-dad)Ga(2,6-iPr2C6H3N)2C][Na(thf)2] (5).
Collapse
Affiliation(s)
- Vladimir A Dodonov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Lin Xiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Olga A Kushnerova
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Evgeny V Baranov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia.
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| | - Igor L Fedushkin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina str. 49, N. Novgorod, Russia. and Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Ma M, Shen L, Wang H, Zhao Y, Wu B, Yang XJ. N,N′-Dipp-o-phenylene-diamido Dianion: A Versatile Ligand for Main Group Metal–Metal-Bonded Compounds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Meimei Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Lingyi Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Huanhuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, China
| |
Collapse
|
12
|
Shen L, Zhao Y, Dai D, Yang YW, Wu B, Yang XJ. Stabilization of Grignard reagents by a pillar[5]arene host – Schlenk equilibria and Grignard reactions. Chem Commun (Camb) 2020; 56:1381-1384. [DOI: 10.1039/c9cc08728a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Grignard reagents with linear alkyl chains are encapsulated and stabilized by pillar[5]arene while preserving their reactivity in Grignard reactions.
Collapse
Affiliation(s)
- Lingyi Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Dihua Dai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an 710069
- China
| |
Collapse
|