1
|
Goswami S, Mandal P, Sarkar S, Mukherjee M, Pal S, Mallick D, Mukherjee D. Flexible NHC-aryloxido aluminum complex and its zwitterionic imidazolium aluminate precursor in ring-opening polymerization of ε-caprolactone. Dalton Trans 2024; 53:1346-1354. [PMID: 38164613 DOI: 10.1039/d3dt02932h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Anionic donor-functionalized NHC (N-heterocyclic carbene) complexes of Al are rare. We report one such case here, an NHC-aryloxido AlMe2 complex [Al(L)Me2] (2), following a stepwise synthesis from the proligand [HO-4,6-tBu2-C6H2-2-CH2{CH(NCHCHNAr)}]Br [LH2Br; Ar = 2,6-iPr2-C6H3 (Dipp)] and AlMe3via the zwitterionic intermediate [Al(LH)Me2Br] (1). The ligand's flexibility in 2 is evident from the conformational fluxionality revealed by VT-1H NMR spectroscopic analysis. The ∠O-Al-C (ca. 100.5°) bite angle is also wider than the ∠O-Ti-C (ca. 80.6°) as seen in our recently reported Ti complex [Ti(L)(NMe2)2Br]. DFT analysis showed that the CNHC-Al bond is significantly ionic, as is the CNHC-Ti bond. Both 1 and 2 are active in the ring-opening polymerization (ROP) of ε-caprolactone (CL). 2, similar to [Ti(L)(NMe2)2Br], exhibits bifunctional MLC-type monomer activation, but only at an elevated temperature. However, the 2/BnOH combination is catalytically active at room temperature, likely through a zwitterionic [Al(LH)Me2(OBn)]. The 1/BnOH combination follows a similar mechanism but surprisingly at a faster rate.
Collapse
Affiliation(s)
- Santu Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Pranay Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| | - Subham Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Mainak Mukherjee
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India.
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India.
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
| |
Collapse
|
2
|
Chen MT, Huang TH, Yang FA, Chen BH. Structural tuning enhanced catalytic activity of amido aluminum complexes for the ring-opening polymerization of ε-caprolactone. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Chang CJ, Lee W, Liou YC, Chang YL, Lai YC, Ding S, Chen HY, Chen HY, Chang YC. Synergy Effect of Aluminum Complexes During the Ring-Opening Polymerization of ε-Caprolactone: Inductive Effects Between Dinuclear Metal Catalysts. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Wang D, Zhou S, Liu Y, Kang X, Liu S, Li Z, Braunstein P. Controlling Polyethylene Molecular Weights and Distributions Using Chromium Complexes Supported by SNN-Tridentate Ligands. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dongqi Wang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shengmei Zhou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongxin Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pierre Braunstein
- Laboratoire de Chimie de Coordination, CNRS, CHIMIE UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67081 Cedex Strasbourg, France
| |
Collapse
|
5
|
Baalbaki HA, Nyamayaro K, Shu J, Goonesinghe C, Jung HJ, Mehrkhodavandi P. Indium-Catalyzed CO 2/Epoxide Copolymerization: Enhancing Reactivity with a Hemilabile Phosphine Donor. Inorg Chem 2021; 60:19304-19314. [PMID: 34870430 DOI: 10.1021/acs.inorgchem.1c03123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Group 13 metal complexes have emerged as powerful catalysts for transforming CO2 into added-value products. However, direct comparisons of reactivity between Al, Ga, and In catalysts are rare. We report aluminum (1), gallium (2), and indium (3) complexes supported by a half-salen H[PNNO] ligand with a pendent phosphine donor and investigate their activity as catalysts for the copolymerization of CO2 and cyclohexene oxide. In solution, the P-donor is dissociated for the Al and Ga complexes while for the In complex it exhibits hemilabile behavior. The indium complex shows higher conversion and selectivity than the Al or Ga analogues. The mechanism of the reaction was studied by NMR and FTIR spectroscopy experiments as well as structural characterization of off-cycle catalytic intermediate indium trichloride complex [(PNNO)InCl3][TBA] (4). This study highlights the impact of a hemilabile phosphine group on group 13 metals and provides a detailed analysis of the initiation step in CO2/epoxide copolymerization reactions.
Collapse
Affiliation(s)
- Hassan A Baalbaki
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kudzanai Nyamayaro
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Julia Shu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chatura Goonesinghe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hyuk-Joon Jung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Parisa Mehrkhodavandi
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
6
|
Qian C, Yuan D, Wang Y, Yao Y. Aluminium complexes supported by a thioether-bridged salen ligand: synthesis, characterization and application in ε-caprolactone homopolymerization and copolymerization with L-lactide. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B. Ring-opening polymerization of cyclic esters by 3- and 4-pyridinyl Schiff base Zn(II) and Cu(II) paddlewheel complexes: kinetic, mechanistic and tacticity studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Kosuru SR, Lai FJ, Chang YL, Li CY, Lai YC, Ding S, Wu KH, Chen HY, Lo YH. Collaboration between Trinuclear Aluminum Complexes Bearing Bipyrazoles in the Ring-Opening Polymerization of ε-Caprolactone. Inorg Chem 2021; 60:10535-10549. [PMID: 34232620 DOI: 10.1021/acs.inorgchem.1c01192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trinuclear aluminum complexes bearing bipyrazoles were synthesized, and their catalytic activity for ε-caprolactone (CL) polymerization was investigated. DBu2Al3Me5 exhibited higher catalytic activity than did the dinuclear aluminum complex LBu2Al2Me4 (16 times as high for CL polymerization; [CL]:[DBu2Al3Me5]:[BnOH] = 100:0.5:5, [DBu2Al3Me5] = 10 mM, conversion 93% after 18 min at room temperature). Density functional theory calculations revealed a polymerization mechanism in which CL first approached the central Al atom and then moved to an external Al. The coordinated CL ring was opened because the repulsion of two tert-butyl groups on the ligands pushed an alkoxide initiator on an external Al to initiate CL. In these trinuclear Al catalysts, the central Al plays a role in monomer capture and then collaborates with the external Al to activate CL, accelerating polymerization.
Collapse
Affiliation(s)
- Someswara Rao Kosuru
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Feng-Jie Lai
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan, Republic of China.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan, Republic of China
| | - Yu-Lun Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Chen-Yu Li
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Yi-Chun Lai
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China.,Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
| | - Yung-Han Lo
- Department of Chemistry, Faculty of Science and Technology, Keio University, Minato City 108-8345, Tokyo, Japan
| |
Collapse
|
9
|
Yang W, Chernyshov IY, van Schendel RKA, Weber M, Müller C, Filonenko GA, Pidko EA. Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes. Nat Commun 2021; 12:12. [PMID: 33397888 PMCID: PMC7782525 DOI: 10.1038/s41467-020-20168-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Any catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h-1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5-200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.
Collapse
Affiliation(s)
- Wenjun Yang
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ivan Yu. Chernyshov
- grid.35915.3b0000 0001 0413 4629TheoMAT Group, ChemBio cluster, ITMO University, Lomonosova 9, St, Petersburg, 191002 Russia
| | - Robin K. A. van Schendel
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Manuela Weber
- grid.14095.390000 0000 9116 4836Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Christian Müller
- grid.14095.390000 0000 9116 4836Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Georgy A. Filonenko
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- grid.5292.c0000 0001 2097 4740Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Zhu D, Li Y, Chen J, Song X. L2Zn and LZnX complexes bearing half-salphen ligands and their catalysis of ring-opening polymerization of ε -caprolactone. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Chang CJ, Chiu CF, Wu KH, Chang YL, Lai YC, Ding S, Chen HY. N-heterocyclic ligand optimization for aluminum complexes in ε-caprolactone and L-Lactide polymerization. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Nie K, Wang C, Cheng X, Li J, Han Y, Yao Y. Unbridged bidentate aluminum complexes supported by diaroylhydrazone ligands: Synthesis, structure and catalysis in polymerization of
ε
‐caprolactone and lactides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kun Nie
- School of Chemistry and Chemical EngineeringTaishan University Taian 271000 China
| | - Changan Wang
- School of Chemistry and Chemical EngineeringTaishan University Taian 271000 China
| | - Xueli Cheng
- School of Chemistry and Chemical EngineeringTaishan University Taian 271000 China
| | - Jikun Li
- School of Chemistry and Chemical EngineeringTaishan University Taian 271000 China
| | - Yinfeng Han
- School of Chemistry and Chemical EngineeringTaishan University Taian 271000 China
| | - Yingming Yao
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
13
|
Qin L, Cheng F, Eisen MS, Chen X. Unexpected substituent’s effects on catalytic activity in the ring-opening polymerization of ε-CL and δ-VL catalyzed by β-pyridyl-enamino Al complexes. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Ryu HK, Bae DY, Lim H, Lee E, Son KS. Ring-opening copolymerization of cyclic epoxide and anhydride using a five-coordinate chromium complex with a sterically demanding amino triphenolate ligand. Polym Chem 2020. [DOI: 10.1039/d0py00155d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work describes polyester synthesis via alternating ring-opening copolymerization of epoxides and anhydrides using a trigonal bipyramidal chromium complex containing a sterically demanding ligand.
Collapse
Affiliation(s)
- Ho Kyun Ryu
- Department of Chemistry
- Chungnam National University
- Daejeon
- Republic of Korea
| | - Dae Young Bae
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Hyeongi Lim
- Department of Chemistry
- Chungnam National University
- Daejeon
- Republic of Korea
| | - Eunsung Lee
- Department of Chemistry
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Kyung-sun Son
- Department of Chemistry
- Chungnam National University
- Daejeon
- Republic of Korea
| |
Collapse
|