1
|
Sancho I, Navarro M, Montilla M, Salvador P, Santamaría C, Luis JM, Hernán-Gómez A. Ti(III) Catalysts for CO 2/Epoxide Copolymerization at Unusual Ambient Pressure Conditions. Inorg Chem 2023; 62:14873-14887. [PMID: 37651747 PMCID: PMC10521022 DOI: 10.1021/acs.inorgchem.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/02/2023]
Abstract
Titanium compounds in low oxidation states are highly reducing species and hence powerful tools for the functionalization of small molecules. However, their potential has not yet been fully realized because harnessing these highly reactive complexes for productive reactivity is generally challenging. Advancing this field, herein we provide a detailed route for the formation of titanium(III) orthophenylendiamido (PDA) species using [LiBHEt3] as a reducing agent. Initially, the corresponding lithium PDA compounds [Li2(ArPDA)(thf)3] (Ar = 2,4,6-trimethylphenyl (MesPDA), 2,6-diisopropylphenyl (iPrPDA)) are combined with [TiCl4(thf)2] to form the heterobimetallic complexes [{TiCl(ArPDA)}(μ-ArPDA){Li(thf)n}] (n = 1, Ar = iPr 3 and n = 2, Ar = Mes 4). Compound 4 evolves to species [Ti(MesPDA)2] (6) via thermal treatment. In contrast, the transformation of 3 into [Ti(iPrPDA)2] (5) only occurs in the presence of [LiNMe2], through a lithium-assisted process, as revealed by density functional theory (DFT). Finally, the Ti(IV) compounds 3-6 react with [LiBHEt3] to give rise to the Ti(III) species [Li(thf)4][Ti(ArPDA)2] (Ar = iPr 8, Mes 9). These low-valent compounds in combination with [PPN]Cl (PPN = bis(triphenylphosphine)iminium) are proved to be highly selective catalysts for the copolymerization of CO2 and cyclohexene epoxide. Reactions occur at 1 bar pressure with activity/selectivity levels similar to Salen-Cr(III) compounds.
Collapse
Affiliation(s)
- Ignacio Sancho
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Marta Navarro
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Marc Montilla
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Pedro Salvador
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Cristina Santamaría
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| | - Josep M. Luis
- Institute
of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Alberto Hernán-Gómez
- Departamento
de Química Orgánica y Química Inorgánica,
Instituto de Investigación Química “Andrés
M. del Río” (IQAR), Universidad
de Alcalá, Campus
Universitario, E-28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Roy SS, Sarkar S, Antharjanam P, Chakraborty D. Ring-opening copolymerization of CO2 with epoxides catalyzed by binary catalysts containing half salen aluminum compounds and quaternary phosphonium salt. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
3
|
Li MJ, Su YC, Liu GL, Ko BT. Dinuclear Nickel Complexes Using Hexadentate Benzothiazole-Based Diamine-Bisphenolate Ligands: Highly Active Catalysts for Copolymerization of Carbon Dioxide with Epoxides. Inorg Chem 2022; 61:12835-12846. [PMID: 35925764 DOI: 10.1021/acs.inorgchem.2c01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We reported for the first time the utilization of hexadentate benzothiazole-based diamine-bisphenolate ligands to synthesize structurally well-characterized dinickel dicarboxylate complexes and studied their catalysis for copolymerization of carbon dioxide with epoxides. Dinickel carboxylate complexes having a 1,3-diamine-bridged backbone were demonstrated to be high-performance catalysts for alternating copolymerization of CO2 and cyclohexene oxide (CHO) with high product selectivity. Particularly, acetate-supported nickel complex 2 enabled us to promote such CO2-copolymerization of this kind with a maximum turnover frequency of up to 2600 h-1 and gave good molecular weight controllability under high-pressure conditions. It is worth noting that bimetallic Ni catalyst 2 was also capable of mediating the catalytic CO2-polymerization of alicyclic epoxides at atmospheric pressure. Kinetic investigations of CO2/CHO copolymerization by 2 allowed us to determine the rate equation of -d[CHO]/dt = kp[2]1[CHO]1, and such catalysis exhibited a first-order dependence on both dinickel complex and CHO concentrations.
Collapse
Affiliation(s)
- Mu-Jia Li
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chia Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Xie J, Chen F, Li M, Liu N. [ONSN]-type chromium complexes catalyzed coupling of CO2 with epoxides. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Hsu S, Chen H, Hung Y, Li Y, Liu G, Ko B, Lin C. Preparation and characterization of Schiff base nickel complexes and their application in the coupling reaction of cyclohexene oxide and carbon dioxide. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shih‐Hsien Hsu
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Hung‐Chih Chen
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Yu‐Ching Hung
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Yi‐Xuan Li
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Guan‐Lin Liu
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Bao‐Tsan Ko
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Chu‐Chieh Lin
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| |
Collapse
|
6
|
Della Monica F, Capacchione C. Recent Advancements in Metal‐Catalysts Design for CO2/Epoxide Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Francesco Della Monica
- Università degli Studi dell'Insubria: Universita degli Studi dell'Insubria Dipartimento di Biotecnologie e Scienze della Vita ITALY
| | - Carmine Capacchione
- Università degli Studi di Salerno Dipartimento di Chimica e Biologia "Adolfo Zambelli" via Giovanni Paolo II 84081 Fisciano SA ITALY
| |
Collapse
|
7
|
Shaw M, Bates M, Jones MD, Ward BD. Metallocene catalysts for the ring-opening co-polymerisation of epoxides and cyclic anhydrides. Polym Chem 2022. [DOI: 10.1039/d2py00335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring-opening co-polymerization (ROCOP) of epoxides and cyclic anhydrides is a versatile route to new polyesters. The vast number of monomers that are readily available means that an effectively limitless...
Collapse
|
8
|
Okuda J, Okumura A, Ghana P, Fink F, Schmidt R, Hoffmann A, Spaniol TP, Herres-Pawlis S. Formate Complexes of Tri- and Tetravalent Titanium Supported by a Tris(phenolato)amine Ligand. Dalton Trans 2022; 51:14345-14351. [DOI: 10.1039/d2dt01739c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Titanium(III) and titanium(IV) formate complexes supported by the sterically encumbering tris(phenolato)amine ligand (H3(O3N) = tris(4,6-di-tert-butyl-2-hydroxybenzyl)amine) are described. Salt metathesis of the chlorido precursor [(O3N)TiCl] (1-Cl) with sodium formate in a...
Collapse
|
9
|
Reddi Y, Cramer CJ. Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO 2/Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yernaidu Reddi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Suresh L, Finnstad J, Törnroos KW, Le Roux E. Bis(phenolate)-functionalized N-heterocyclic carbene complexes of oxo- and imido-vanadium(V). Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Hopmann KH. A Polymer Magician: Professor Charlotte K. Williams. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
12
|
Suresh L, Lalrempuia R, B. Ekeli J, Gillis-D’Hamers F, Törnroos KW, Jensen VR, Le Roux E. Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO 2. Molecules 2020; 25:E4364. [PMID: 32977466 PMCID: PMC7582562 DOI: 10.3390/molecules25194364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
Tridentate, bis-phenolate N-heterocyclic carbenes (NHCs) are among the ligands giving the most selective and active group 4-based catalysts for the copolymerization of cyclohexene oxide (CHO) with CO2. In particular, ligands based on imidazolidin-2-ylidene (saturated NHC) moieties have given catalysts which exclusively form polycarbonate in moderate-to-high yields even under low CO2 pressure and at low copolymerization temperatures. Here, to evaluate the influence of the NHC moiety on the molecular structure of the catalyst and its performance in copolymerization, we extend this chemistry by synthesizing and characterizing titanium complexes bearing tridentate bis-phenolate imidazol-2-ylidene (unsaturated NHC) and benzimidazol-2-ylidene (benzannulated NHC) ligands. The electronic properties of the ligands and the nature of their bonds to titanium are studied using density functional theory (DFT) and natural bond orbital (NBO) analysis. The metal-NHC bond distances and bond strengths are governed by ligand-to-metal σ- and π-donation, whereas back-donation directly from the metal to the NHC ligand seems to be less important. The NHC π-acceptor orbitals are still involved in bonding, as they interact with THF and isopropoxide oxygen lone-pair donor orbitals. The new complexes are, when combined with [PPN]Cl co-catalyst, selective in polycarbonate formation. The highest activity, albeit lower than that of the previously reported Ti catalysts based on saturated NHC, was obtained with the benzannulated NHC-Ti catalyst. Attempts to synthesize unsaturated and benzannulated NHC analogues based on Hf invariably led, as in earlier work with Zr, to a mixture of products that include zwitterionic and homoleptic complexes. However, the benzannulated NHC-Hf complexes were obtained as the major products, allowing for isolation. Although these complexes selectively form polycarbonate, their catalytic performance is inferior to that of analogues based on saturated NHC.
Collapse
Affiliation(s)
- Lakshmi Suresh
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Ralte Lalrempuia
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Jonas B. Ekeli
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Francis Gillis-D’Hamers
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| | - Erwan Le Roux
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway; (L.S.); (R.L.); (J.B.E.); (F.G.-D.); (K.W.T.)
| |
Collapse
|