1
|
Chatterjee A, Mondal J, Paul S, Sharma H, Goswami RK, Sen P. Deciphering the Comprehensive Structure-Activity Relationship of Sunshinamide for Breast Cancer Therapy through Dual Modulation of Apoptotic and Ferroptotic Pathways via TrxR1 and Gpx4 Inhibition. J Med Chem 2024; 67:21952-21974. [PMID: 39668144 DOI: 10.1021/acs.jmedchem.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Sunshinamide, a cyclodepsipeptide, has demonstrated significant potential in inhibiting cancer cell proliferation. Our prior research established the total synthesis and anticancer properties of sunshinamide. However, a deeper understanding of the structure-activity relationship (SAR) of sunshinamide remained imperative. In this study, we aimed to elucidate the SAR and mechanistic insights underlying sunshinamide action, both in vitro and in vivo. SAR studies confirm the crucial roles of both the bicyclic-ring and disulfide moiety in the anticancer activity of sunshinamide. Our recent findings unveil that sunshinamide targets TrxR1, leading to ROS generation and ER-stress-mediated apoptosis, while also promoting lipid peroxidation by targeting Gpx4, rendering cancer cells vulnerable to ferroptosis. In vivo, experiments demonstrated the effectiveness of sunshinamide in reducing tumor growth by inducing both apoptosis and ferroptosis. The dual efficacy of sunshinamide in eliciting apoptosis and ferroptosis positions it as a promising candidate for breast cancer therapy, addressing the challenge of chemoresistance.
Collapse
Affiliation(s)
- Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Joyanta Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Himangshu Sharma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Auddy S, Gupta S, Mandi S, Sharma H, Sinha S, Goswami RK. Total Synthesis of Lipopeptide Bacilotetrin C: Discovery of Potent Anticancer Congeners Promoting Autophagy. ACS Med Chem Lett 2024; 15:1340-1350. [PMID: 39140062 PMCID: PMC11318098 DOI: 10.1021/acsmedchemlett.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
A convergent strategy for the first total synthesis of the lipopeptide bacilotetrin C has been developed. The key features of this synthesis include Crimmins acetate aldol, Steglich esterification, and macrolactamization. Twenty-nine variants of the natural product were prepared following a systematic structure-activity relationship study, where some of the designed analogues showed promising cytotoxic effects against multiple human carcinoma cell lines. The most potent analogue exhibited a ∼37-fold enhancement in cytotoxicity compared to bacilotetrin C in a triple-negative breast cancer (MDA-MB-231) cell line at submicromolar doses. The study further revealed that some of the analogues induced autophagy in cancer cells to the point of their demise at doses much lower than those of known autophagy-inducing peptides. The results demonstrated that the chemical synthesis of bacilotetrin C with suitable improvisation plays an important role in the development of novel anticancer chemotherapeutics, which would allow future rational design of novel autophagy inducers on this template.
Collapse
Affiliation(s)
- Sourya
Shankar Auddy
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Shalini Gupta
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Subrata Mandi
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Himangshu Sharma
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Surajit Sinha
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Rajib Kumar Goswami
- School
of Chemical Sciences and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
3
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Saha S, Auddy SS, Chatterjee A, Sen P, Goswami RK. Late-Stage Functionalization: Total Synthesis of Beauveamide A and Its Congeners and Their Anticancer Activities. Org Lett 2022; 24:7113-7117. [PMID: 36148993 DOI: 10.1021/acs.orglett.2c02699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asymmetric total synthesis of cyclotetradepsipeptide beauveamide A has been achieved for the first time. A macrolactamization strategy involving two possible sites has been explored to find the most effective route for cyclization. A late-stage functionalization approach has been adopted for easy access of non-natural analogues of beauveamide A for further biological evaluation. Interestingly, the anticancer activity of one of the synthesized analogues was better than that of the parent natural product.
Collapse
|
5
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Abstract
A convergent route for the asymmetric total synthesis of potent anticancer polyketide natural product amphirionin-2 has been developed. Our initial synthetic trials revealed that the proposed structures of amphirionin-2 need to be revised consistent with a recent report of Fuwa et al., where the actual structure of amphirionin-2 was established. The key features of our synthesis comprised Sharpless asymmetric dihydroxylation, followed by cycloetherification, Wittig olefination, Julia-Kocienski olefination, and Crimmins propionate aldol reaction.
Collapse
Affiliation(s)
- Dhiman Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Gour Hari Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
7
|
Paul D, Sahana MH, Mandal P, Chakrabarti P, Goswami RK. Biselyngbyolides A & C: their total synthesis and anticancer activities. Org Biomol Chem 2020; 18:7151-7164. [PMID: 32966514 DOI: 10.1039/d0ob00576b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Convergent strategies for the first total synthesis of biselyngbyolide C and an alternative route for the total synthesis of biselyngbyolide A have been developed. The key strategic feature in this study is Heck macrocyclization. The use of intramolecular Heck coupling for biselyngbyolide B was demonstrated by us earlier; however such a strategy has not been explored further for the other members of this family of natural products, in particular, where sensitive skipped olefins are involved. The other highlights of this synthetic study include iterative Crimmins acetate aldol and Wittig olefination processes, followed by the less explored cobalt-hydride-based reduction of an activated olefin and Shiina esterification. Our synthetic study enabled us to amend the reported NMR data of biselyngbyolides A and C. An evaluation of the anticancer activities of both biselyngbyolides A and C revealed that the apoptosis generated in cancer cells followed an intrinsic pathway.
Collapse
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Pratiti Mandal
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Partha Chakrabarti
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
8
|
Saha S, Paul D, Goswami RK. Cyclodepsipeptide alveolaride C: total synthesis and structural assignment. Chem Sci 2020; 11:11259-11265. [PMID: 34094366 PMCID: PMC8162944 DOI: 10.1039/d0sc04478d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
First stereoselective total synthesis of naturally occurring bioactive cyclodepsipeptide alveolaride C has been achieved using a convergent approach. This synthetic study enabled us to establish unambiguously the stereochemistry of three unassigned chiral centres embedded in the nonpeptidic segment as well as revised the stereochemistry of the proposed β-phenylalanine counterpart of the molecule. The key strategic features of this synthesis include Sharpless asymmetric dihydroxylation for installing the vicinal diol moiety, Julia–Kocienski olefination for constructing the aliphatic side chain, the Shiina protocol for intermolecular esterification, amide coupling and macrolactamization for the ring formation. First total synthesis of natural cyclodepsipeptide alveolaride C has been accomplished with an unambiguous solution to its structural riddle.![]()
Collapse
Affiliation(s)
- Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
9
|
Tonoi T, Ikeda M, Sato T, Inohana T, Kawahara R, Murata T, Shiina I. Total Synthesis of the Antitumor Depsipeptide FE399 and Its S‐Benzyl Derivative: A Macrolactamization Approach. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takayuki Tonoi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Miyuki Ikeda
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Teruyuki Sato
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Takehiko Inohana
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Ryo Kawahara
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Takatsugu Murata
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| | - Isamu Shiina
- Department of Applied Chemistry Faculty of Science Tokyo University of Science 1‐3 Kagurazaka, Shinjuku‐ku 162‐8601 Tokyo Japan
| |
Collapse
|
10
|
Arbour CA, Imperiali B. Uridine natural products: Challenging targets and inspiration for novel small molecule inhibitors. Bioorg Med Chem 2020; 28:115661. [PMID: 32828427 DOI: 10.1016/j.bmc.2020.115661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
Nucleoside derivatives, in particular those featuring uridine, are familiar components of the nucleoside family of bioactive natural products. The structural complexity and biological activities of these compounds have inspired research from organic chemistry and chemical biology communities seeking to develop novel approaches to assemble the challenging molecular targets, to gain inspiration for enzyme inhibitor development and to fuel antibiotic discovery efforts. This review will present recent case studies describing the total synthesis and biosynthesis of uridine natural products, and de novo synthetic efforts exploiting features of the natural products to produce simplified scaffolds. This research has culminated in the development of complementary strategies that can lead to effective uridine-based inhibitors and antibiotics. The strengths and challenges of the juxtaposing methods will be illustrated by examining select uridine natural products. Moreover, structure-activity relationships (SAR) for each natural product-inspired scaffold will be discussed, highlighting the impact on inhibitor development, with the aim of future uridine-based small molecule expansion.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|