1
|
Song YF, Wang Y, Zou ZB, Chao R, Wu TZ, Zhong TH, Zhang AL, Gao CH, Yang XW. Chemical Constituents of the Deep-Sea-Derived Fungus Trichoderma simmonsii ZEN3. Chem Biodivers 2025:e202500135. [PMID: 39865416 DOI: 10.1002/cbdv.202500135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Two new nor-rubrofusarin derivatives (trichsimins A and B, 1 and 2) and one new chromone derivative (trichsimin C, 5) were isolated from the deep-sea-derived Trichoderma simmonsii ZEN3 along with 20 known compounds (3, 4, and 6-23). The structures of the new compounds were established by detailed analyses of the NMR, HRESIMS, and optical rotatory dispersion (ORD) data. Nafuredin (14) exhibited potent inhibition against RSL3-induced ferroptosis with an EC50 value of 5.54 µM.
Collapse
Affiliation(s)
- Yun-Fei Song
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Rong Chao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Tian-Hua Zhong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - A-Long Zhang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Cheng-Hai Gao
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xian-Wen Yang
- Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
Nagayasu S, Togo H, Nagai K, Kobayashi S. Skeletal Isomerization of Ergosterol-5,8-Peroxide Leading to the Discovery of Unprecedented Ergostanes and Collective Syntheses of 5,6-Epoxysterols and (+)-Sarocladione. Chemistry 2025; 31:e202403431. [PMID: 39470122 DOI: 10.1002/chem.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Skeletal isomerization of ergosterol peroxide, a primary oxidation product of ergosterol, was investigated under thermal and iron(II)-mediated conditions. Thermal isomerization resulted in not only the isolation of the predicted 7-hydroxy-5,6-epoxides but also the discovery of the unprecedented 7/9/5-ring-fused ergostane for the first time. The iron(II)-mediated isomerization proceeded at ambient temperature, resulting in the formation of the expected 5,6-epoxysterols and a ring-opened bicyclic diketone. The diketone was further converted into novel ergostane under thermal conditions and into (+)-sarocladione under acidic conditions. All transformations from ergosterol to sarocladione, including the isolation of the unstable diketone intermediate, were achieved at ambient temperature, confirming the biosynthetic pathway of sarocladione. Several mushroom ingredients with a 5,6-epoxy group were synthesized stereoselectively from the isomerization products, leading to the confirmation or revision of the structures of natural products. The β-amyloid aggregation inhibitory activity of synthetic sterols was evaluated for the first time to gain insights into the potential for dementia prevention. This study is valuable both for supplying rare sterols found in mushrooms for biological studies and for shedding light on the oxidative metabolic pathways of ergosterol.
Collapse
Affiliation(s)
- Saki Nagayasu
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hinata Togo
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Kaoru Nagai
- Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Shoji Kobayashi
- Department of Applied Chemistry, Faculty of Engineering and Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
3
|
Pang C, Chen YH, Bian HH, Zhang JP, Su L, Han H, Zhang W. Anti-Inflammatory Ergosteroid Derivatives from the Coral-Associated Fungi Penicillium oxalicum HL-44. Molecules 2023; 28:7784. [PMID: 38067514 PMCID: PMC10708211 DOI: 10.3390/molecules28237784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
To obtain the optimal fermentation condition for more abundant secondary metabolites, Potato Dextrose Agar (PDA) medium was chosen for the scale-up fermentation of the fungus Penicillium oxalicum HL-44 associated with the soft coral Sinularia gaweli. The EtOAc extract of the fungi HL-44 was subjected to repeated column chromatography (CC) on silica gel and Sephadex LH-20 and semipreparative RP-HPLC to afford a new ergostane-type sterol ester (1) together with fifteen derivatives (2-16). Their structures were determined with spectroscopic analyses and comparisons with reported data. The anti-inflammatory activity of the tested isolates was assessed by evaluating the expression of pro-inflammatory factors Tnfα and Ifnb1 in Raw264.7 cells stimulated with LPS or DMXAA. Compounds 2, 9, and 14 exhibited significant inhibition of Ifnb1 expression, while compounds 2, 4, and 5 showed strong inhibition of Tnfα expression in LPS-stimulated cells. In DMXAA-stimulated cells, compounds 1, 5, and 7 effectively suppressed Ifnb1 expression, whereas compounds 7, 8, and 11 demonstrated the most potent inhibition of Tnfα expression. These findings suggest that the tested compounds may exert their anti-inflammatory effects by modulating the cGAS-STING pathway. This study provides valuable insight into the chemical diversity of ergosteroid derivatives and their potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Cheng Pang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Yu-Hong Chen
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hui-Hui Bian
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Jie-Ping Zhang
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, 99 Shangda Rd., Shanghai 200444, China
| | - Hua Han
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| | - Wen Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Gao-Ke Rd., Hangzhou 311402, China
- School of Medicine, Tongji University, 1238 Gonghexin Rd., Shanghai 200070, China
| |
Collapse
|
4
|
Feng YP, Wang HK, Wu JL, Shao P, Zhou WL, Lai QL, Lin HW, Naman CB, Wang TT, He S. Acremocholone, an Anti-Vibrio Steroid from the Marine Mesophotic Zone Ciocalypta Sponge-Associated Fungus Acremonium sp. NBUF150. Chem Biodivers 2022; 19:e202200028. [PMID: 35194947 DOI: 10.1002/cbdv.202200028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/21/2022] [Indexed: 11/07/2022]
Abstract
Mesophotic coral ecosystems (MCEs) represent an underexplored source of intriguing natural products. Efforts to discover bioactive metabolites from sponge-associated fungi in MCEs identified a new steroid, acremocholone (1) and its three known analogs (2-4), from Acremonium sp. NBUF150. The Acremonium sp. NBUF150 was isolated from a Ciocalypta sponge located 70 m deep within the South China Sea. The planar structures and absolute configuration of 1-4 were determined from NMR-derived spectroscopic data, HR-ESI-MS, and X-ray crystallography. Compound 1 exhibited antimicrobial inhibition against Vibrio scophthalmi, V. shilonii and V. brasiliensis at minimum inhibitory concentrations of 8 μg/mL; compound 2 inhibited V. shilonii and V. brasiliensis at 8 and 32 μg/mL, respectively, and compound 4 inhibited growth of V. brasiliensis at 16 μg/mL. Sponge associated fungi from MCEs represent a promising resource of anti-Vibrio drug leads for aquaculture use.
Collapse
Affiliation(s)
- Yun-Ping Feng
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Hong-Kun Wang
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Jia-Ling Wu
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Peng Shao
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Wen-Li Zhou
- College of Fisheries, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qi-Liang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of P. R. China, Xiamen, 361005, China
| | - Hou-Wen Lin
- State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Research Center for Marine Drugs, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - C Benjamin Naman
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Ting-Ting Wang
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Shan He
- Li Dak Sum Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.,Ningbo Institute of Marine Medicine, Peking University, Ningbo, Zhejiang, 315832, China
| |
Collapse
|
5
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
6
|
Schmalz HG, Taspinar Ö, Stojadinovic VK, Neudörfl JM. A Concise Synthesis of 24,25-Dihydro-6-epi-Monanchosterol A. Synlett 2021. [DOI: 10.1055/a-1480-5225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWe report the first synthetic entry to a steroid with an unusual bicyclo[4.3.1]dec-3-en-10-one A/B ring substructure as a close structural analogue of the anti-inflammatory monanchosterols. Under optimized conditions, regioselective cis-dihydroxylation of the Δ5-double bond of 7-dehydrocholesterol and subsequent Criegee oxidation yields the corresponding 5,6-seco-steroid as a pure Z-isomer which upon treatment with K2CO3 in MeOH diastereoselectively affords 24,25-dihydro-6-epi-monanchosterol A through intramolecular aldol addition (cyclization). The developed three-step sequence proceeds in 17% overall yield without the need of any protecting group. The title compound was characterized by X-ray crystallography.
Collapse
|
7
|
Li XR, Yan BC, Hu K, He S, Sun HD, Zuo J, Puno PT. Spiro ent-Clerodane Dimers: Discovery and Green Approaches for a Scalable Biomimetic Synthesis. Org Lett 2021; 23:5647-5651. [PMID: 34170713 DOI: 10.1021/acs.orglett.1c01724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scospirosins A (1) and B (2), two unprecedented spiro ent-clerodane dimers with 6/6/10/6 and 6/6/6/6/6 ring systems, respectively, were isolated from Isodon scoparius. Their structures were unambiguously established by spectroscopic, X-ray crystallographic, and chemical approaches. A bioinspired protecting-group-free strategy for their synthesis was achieved on a gram scale and featured the application of green methods, including neat reaction, sensitized photooxygenation, and electrochemical oxidation. 2 exhibited selective immunosuppressive activity against the proliferation of T lymphocytes (IC50 = 1.42 μM).
Collapse
Affiliation(s)
- Xing-Ren Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Dong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pema-Tenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
8
|
Poulsen TB. Total Synthesis of Natural Products Containing Enamine or Enol Ether Derivatives. Acc Chem Res 2021; 54:1830-1842. [PMID: 33660974 DOI: 10.1021/acs.accounts.0c00851] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enamine and enol ethers are nucleophilic functional groups that are well known to most chemists. When enamine or enol ethers are present in natural products, they are nearly exclusively found as derivatives having a direct connection to electron-withdrawing groups for stabilization, and the resulting larger entities, such as enamides or enol acylates, can be further extended or modified in the framework of natural products. The restricted conformational space that is associated with even simple enamine and enol ether derivatives can be a strong determinant of the overall molecular structure, and the more polarized derivatives can endow some natural products with electrophilic properties and thus facilitate covalent interactions with biological targets.In this Account, I describe our efforts (published since 2016) to prepare natural products from several different classes that all feature enamine or enol ether derivatives as key functionalities. Our choice of targets has been guided by a desire to illuminate unknown biological mechanisms associated with the compounds or, alternatively, to improve upon known biological activities that appear to be promising from a biomedical perspective. In the present text, however, the exclusive focus will be on the syntheses.First, I will discuss the basic properties of the functional groups and briefly present a small collection of illustrative and inspirational examples from the literature for their construction in different complex settings. Next, I will provide an overview of our work on the macrocyclic APD-CLD natural products, rakicidin A and BE-43547A1, involving the development of an efficient macrocyclization strategy and the development of methods to construct the hallmark APD group: a modified enamide. The synthesis of the meroterpenoid strongylophorine-26 is discussed next, where we developed an oxidative quinone methoxylation to build a vinylogous ester group in the final step of the synthesis and employed FeCl3-mediated cascade reactions for the rapid assembly of the overall scaffold to enable a short semisynthesis from isocupressic acid. An efficient core scaffold assembly was also in focus in our synthesis of the alkaloid streptazone A with the signature enaminone system being assembled through a rhodium-catalyzed Pauson-Khand reaction. Sequential, site-selective redox manipulations were developed to arrive at strepatzone A and additional members of the natural product family. Finally, I discuss our work to prepare analogs of complex polyether ionophores featuring functionalized tetronic acids as cation-binding groups. A method for the construction of a suitably protected chloromethylidene-modified tetronate is presented which enabled its installation in the full structure through a C-acylation reaction. This work exemplifies how components of abundant polyether ionophores can be recycled and used to access new structures which may possess enhanced biological activities.
Collapse
Affiliation(s)
- Thomas B. Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Huang X, Cai C. Preparation of adamantylidene enol ethers by Wittig-Horner reaction. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Duecker FL, Heinze RC, Steinhauer S, Heretsch P. Discoveries and Challenges en Route to Swinhoeisterol A. Chemistry 2020; 26:9971-9981. [PMID: 32315103 PMCID: PMC7497115 DOI: 10.1002/chem.202001405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Indexed: 01/29/2023]
Abstract
In this work, a full account of the authors' synthetic studies is reported that culminated in the first synthesis of 13(14→8),14(8→7)diabeo-steroid swinhoeisterol A as well as the related dankasterones A and B, 13(14→8)abeo-steroids, and periconiastone A, a 13(14→8)abeo-4,14-cyclo-steroid. Experiments are described in detail that provided further insight into the mechanism of the switchable radical framework reconstruction approach. By discussing failed strategies and tactics towards swinhoeisterol A, the successful route that also allowed an access to structurally closely related analogues, such as Δ22 -24-epi-swinhoeisterol A, is eventually presented.
Collapse
Affiliation(s)
- Fenja L. Duecker
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Robert C. Heinze
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Simon Steinhauer
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Philipp Heretsch
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|