1
|
Rodríguez-Núñez YA, Sánchez-Márquez J, Quintero-Saumeth J, Guerra CJ, Polo-Cuadrado E, Villaman D, Fica-Cornejo CA, Romero Bohórquez AR. Mechanistic insights on the Lewis acid-catalyzed three-component cationic Povarov reaction: synthesis of N-propargyl 1,2,3,4-tetrahydroquinolines. RSC Adv 2025; 15:11799-11810. [PMID: 40236572 PMCID: PMC11997963 DOI: 10.1039/d5ra01375e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025] Open
Abstract
In this study, the Povarov cationic reaction mechanism was explored using five different Lewis acids as catalysts for the synthesis of N-propargyl-6-methoxy-4-(2'-oxopyrrolidin-1'-yl)-1,2,3,4-tetrahydroquinoline, where the best reaction yield was obtained using InCl3. The desired product was not obtained in the absence of a catalyst. A comprehensive theoretical analysis at the density functional theory (DFT) level was conducted to study the role of the catalyst and establish a detailed reaction mechanism. Electron localization function (ELF) analyses were performed to elucidate the key bonding events during the reaction stages, highlighting the differences in bond formation among the different catalysts. Our results showed that the presence of an acid catalyst is required for obtaining the intermediary iminium ion. In this sense, the InCl3 catalyst provides the lowest energy barrier for catalytic interactions, increasing the electrophilic character and, therefore the reactivity of formaldehyde, promoting the formation of iminium ions and subsequently triggering the obtaining of the tetrahydroquinoline compound. In fact, from theoretical analysis, our findings provide evidence of the formation of the tetrahydroquinoline compound through a set of energetically favorable step reactions, ruling out a concerted process. The step involved in this part of the mechanism includes the formation of a Mannich-type adduct, obtained by the nucleophilic addition reaction between the iminium cation and an activated alkene, and a subsequent cyclization via an intramolecular Friedel-Crafts reaction. This defines the cationic Povarov reaction as a domino reaction and invites us to discard the wrong use of the name Aza Diels-Alder or imino Diels-Alder for this type of reaction.
Collapse
Affiliation(s)
- Yeray A Rodríguez-Núñez
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Laboratorio de Síntesis y Reactividad de Compuestos Orgánicos Santiago 8370146 Chile
| | - Jesús Sánchez-Márquez
- Departamento de Química-Física, Facultad de Ciencias, Campus Universitario Río San Pedro, Universidad de Cádiz Cádiz Spain
| | - Jorge Quintero-Saumeth
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIM, Parque Tecnológico Guatiguará, Universidad Industrial de Santander Piedecuesta 681011 Colombia
| | - Cristian J Guerra
- Departamento de Ciencias Químicas, Facultad de ciencias Exactas, Universidad Andrés Bello Republica 275 Santiago Chile
| | - Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepción Chile
| | - David Villaman
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción Edmundo Larenas 129, Casilla 160-C Concepción 4070386 Chile
| | - Cristopher A Fica-Cornejo
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Laboratorio de Síntesis y Reactividad de Compuestos Orgánicos Santiago 8370146 Chile
| | - Arnold R Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIM, Parque Tecnológico Guatiguará, Universidad Industrial de Santander Piedecuesta 681011 Colombia
| |
Collapse
|
2
|
Zeid MM, El-Badry OM, El-Meligie S, Hassan RA. Pyrimidine: A Privileged Scaffold for the Development of Anticancer Agents as Protein Kinase Inhibitors (Recent Update). Curr Pharm Des 2025; 31:1100-1129. [PMID: 39773052 DOI: 10.2174/0113816128346900241111115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The pyrimidine nucleus is a fundamental component of human DNA and RNA, as well as the backbone of many therapeutic agents. Its significance in medicinal chemistry is well-established, with pyrimidine derivatives receiving considerable attention due to their potent anticancer properties across various cancer cell lines. Numerous derivatives have been synthesized, drawing structural inspiration from known anticancer agents like dihydropyrimidine compounds, which include the active cores of drugs such as 5-fluorouracil and monastrol, both of which have demonstrated strong anticancer efficacy. Additionally, various pyrimidine derivatives have been developed through different synthetic pathways, exhibiting promising anticancer potential. In response to the growing need for effective cancer treatments, recent efforts have focused on synthesizing and exploring novel pyrimidine derivatives with improved efficacy and specificity. This review aims to highlight the versatility of pyrimidine-based compounds in cancer therapy, emphasizing not only their potency and binding affinity but also their optimal interaction with diverse biological targets. The goal is to facilitate the design of new pyrimidine derivatives with enhanced anticancer potential, providing effective solutions for the treatment of various cancer types.
Collapse
Affiliation(s)
- Mai M Zeid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Osama M El-Badry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Salwa El-Meligie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
3
|
Wu J, Xie S, Zhou L, Liu Y, Cui Y, Huang X, Wei C, Li X, Zhang C, Chen H. One-Pot Stereoselective Synthesis of Furantetrahydroquinoline Derivatives Using d/l-Ribose with a 2,3- O-Isopropylidene Group. J Org Chem 2023; 88:12445-12450. [PMID: 37594367 DOI: 10.1021/acs.joc.3c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An efficient and convenient strategy has been successfully developed for the preparation of novel furantetrahydroquinoline derivatives using d/l-ribose with a 2,3-O-isopropylidene group through the aza-Diels-Alder mechanism. This method has high atom and step economy, high stereoselectivity, and gram-scale synthesis (yield 67%).
Collapse
Affiliation(s)
- Jilai Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Song Xie
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Likai Zhou
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai, Hebei 054001, China
| | - Yixuan Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yaxin Cui
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xiaoyan Huang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chao Wei
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xiaoliu Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
4
|
Sanabria-Sánchez CM, Kouznetsov VV, Ochoa-Puentes C. Diastereoselective multicomponent synthesis of dihydroisoindolo[2,1- a]quinolin-11-ones mediated by eutectic solvents. RSC Adv 2023; 13:26189-26195. [PMID: 37671006 PMCID: PMC10475973 DOI: 10.1039/d3ra05561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023] Open
Abstract
In this contribution, a series of dihydroisoindolo[2,1-a]quinolin-11-ones was synthesized by a one-pot multicomponent Povarov reaction starting from anilines, alkenes (trans-anethole, methyl eugenol and indene) and 2-formylbenzoic acid. Different eutectic solvents bearing Lewis or Brønsted acids were evaluated as reaction media and catalysts for the model reaction employing p-toluidine and trans-anethole finding that the eutectic mixture ChCl/ZnCl2 (1/2) allowed the obtention of the target compound in 77% isolated yield. Under the optimized reaction conditions, 20 derivatives were obtained in good to moderated yields using meta- and para-susbstituted anilines, while the corresponding ortho-analogs followed a different pathway affording isoindolinones. In addition, the eutectic mixture was reused in six cycles without observing a detrimental catalytic activity. This methodology features mild reaction conditions, short reaction time, simple work-up, and utilization of a reusable solvent; and provides straightforward and diastereoselective access to these alkaloid-like heterocyclic molecules.
Collapse
Affiliation(s)
- Carlos M Sanabria-Sánchez
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Santander Colombia
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá Carrera 45 # 26-85 A.A. 5997 Bogotá Cundinamarca Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Cl. 9 # Cra 27 A.A. 680006 Bucaramanga Santander Colombia
| | - Cristian Ochoa-Puentes
- Laboratorio de Síntesis Orgánica Sostenible, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá Carrera 45 # 26-85 A.A. 5997 Bogotá Cundinamarca Colombia
| |
Collapse
|
5
|
Lespinasse M, Wei K, Perrin J, Winkler M, Hamaidia S, Leroy A, Macek Jilkova Z, Philouze C, Marche PN, Petosa C, Govin J, Emadali A, Wong Y. Enantioselective Approach for Expanding the Three‐Dimensional Space of Tetrahydroquinoline to Develop BET Bromodomain Inhibitors**. Chemistry 2022; 28:e202202293. [DOI: 10.1002/chem.202202293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kaiyao Wei
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
- Univ. Grenoble Alpes CEA CNRS 5075 IBS 38000 Grenoble France
| | - Justine Perrin
- Univ. Grenoble Alpes CNRS 5063 DPM 38000 Grenoble France
| | | | - Sieme Hamaidia
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
| | - Alexis Leroy
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
| | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
- Univ. Grenoble Alpes CHU Grenoble Alpes 38000 Grenoble France
| | | | - Patrice N. Marche
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
| | - Carlo Petosa
- Univ. Grenoble Alpes CEA CNRS 5075 IBS 38000 Grenoble France
| | - Jérôme Govin
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
| | - Anouk Emadali
- Univ. Grenoble Alpes Inserm U1209 CNRS 5309 IAB 38000 Grenoble France
- Univ. Grenoble Alpes CHU Grenoble Alpes 38000 Grenoble France
| | - Yung‐Sing Wong
- Univ. Grenoble Alpes CNRS 5063 DPM 38000 Grenoble France
| |
Collapse
|
6
|
Mo NF, Zhang Y, Guan ZH. Highly Enantioselective Three-Component Povarov Reaction for Direct Construction of Azaspirocycles. Org Lett 2022; 24:6397-6401. [PMID: 36018318 DOI: 10.1021/acs.orglett.2c02421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An asymmetric organocatalyzed three-component Povarov reaction to construct azaspirocycles has been developed. A chiral phosphoric acid OCF-CPA bearing o-CF3-aryl on the H8-BINOL-framework is highly efficient in the reaction. The reaction was carried out under mind conditions for synthesis of a range of azaspirocycles in high yields and high to excellent enantioselectivities, thus expending the substrate scope of the traditional Povarov reaction.
Collapse
Affiliation(s)
- Nan-Fang Mo
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
7
|
Zhou F, Hu QL, Hou KQ, Chan ASC, Xiong XF. Construction of α,β-Diamino Diacid Derivatives with Adjacent Acyclic Tetrasubstituted Stereocenters. J Org Chem 2022; 87:8709-8718. [PMID: 35713885 DOI: 10.1021/acs.joc.2c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A convenient strategy for the diastereoselective synthesis of α,β-diamino diacid derivatives bearing congested vicinal acyclic tetrasubstituted stereocenters via catalytic Mannich-type reactions of azlactones and 2-aminoacrylates was established. A diverse set of α,β-diamino diacid derivatives were synthesized in good to excellent yields and diastereoselectivities. Good enantioselectivity (up to 98:2 er) was achieved by employing the catalyst (DHQD)2PHAL in the subsequent asymmetric study.
Collapse
Affiliation(s)
- Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Qi-Long Hu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
8
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
9
|
Kazancioglu MZ, Quirion K, Wipf P, Skoda EM. Enantioselective synthesis and selective functionalization of 4-aminotetrahydroquinolines as novel GLP-1 secretagogues. Chirality 2022; 34:521-536. [PMID: 34964164 PMCID: PMC8837726 DOI: 10.1002/chir.23403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023]
Abstract
Polysubstituted tetrahydroquinolines were obtained in moderate to high yields (28% to 92%) and enantiomeric ratios (er 89:11 to 99:1) by a three-component Povarov reaction using a chiral phosphoric acid catalyst. Significantly, post-Povarov functional group interconversions allowed a rapid access to a library of 36 enantioenriched 4-aminotetrahydroquinoline derivatives featuring five points of diversity. Selected analogs were assayed for their ability to function as glucagon-like peptide-1 (GLP-1) secretagogues.
Collapse
Affiliation(s)
- Mustafa Z. Kazancioglu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Kevin Quirion
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA.,Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin M. Skoda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Clerigué J, Ramos MT, Menéndez JC. Enantioselective catalytic Povarov reactions. Org Biomol Chem 2022; 20:1550-1581. [PMID: 34994760 DOI: 10.1039/d1ob02270a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic asymmetric Povarov protocols have undergone an explosive growth, especially in the last ten years, since the first example was published in 1996. The use of chiral Lewis and Brønsted acids and dual strategies based on their combination with catalysts acting by hydrogen bond formation, as well as covalent aminocatalysis, are reviewed. More recent variations such as the nitroso Povarov reaction and interrupted Povarov reactions as a route to chiral scaffolds other than tetrahydroquinolines are also discussed.
Collapse
Affiliation(s)
- José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - M Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Lemos BC, Venturini Filho E, Fiorot RG, Medici F, Greco SJ, Benaglia M. Enantioselective Povarov Reactions: An Update of a Powerful Catalytic Synthetic Methodology. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bárbara C. Lemos
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Eclair Venturini Filho
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Rodolfo G. Fiorot
- Chemistry Institute Federal Fluminense University Outeiro de São João Batista RJ, 24020-141 Niteroi Brazil
| | - Fabrizio Medici
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| | - Sandro J. Greco
- Chemistry Department Federal University of Espírito Santo Vitória Espírito Santo CEP.: 29075-910 Brazil
| | - Maurizio Benaglia
- Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milano Italy
| |
Collapse
|
12
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Zhang BB, Peng S, Wang F, Lu C, Nie J, Chen Z, Yang G, Ma C. Borane-catalyzed cascade Friedel–Crafts alkylation/[1,5]-hydride transfer/Mannich cyclization to afford tetrahydroquinolines. Chem Sci 2022; 13:775-780. [PMID: 35173942 PMCID: PMC8768868 DOI: 10.1039/d1sc05629h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
We report a redox-neutral annulation reaction of tertiary amines with electron-deficient alkynes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Shuo Peng
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Zuxing Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
14
|
Affiliation(s)
- Zeynep Dilşad Susam
- Department of Chemistry Middle East Technical University Dumlupınar Bulvarı, No. 1 06800 Çankaya, Ankara Turkey
| | - Cihangir Tanyeli
- Department of Chemistry Middle East Technical University Dumlupınar Bulvarı, No. 1 06800 Çankaya, Ankara Turkey
| |
Collapse
|
15
|
Vinogradov MG, Turova OV, Zlotin SG. Catalytic Asymmetric Aza‐Diels‐Alder Reaction: Pivotal Milestones and Recent Applications to Synthesis of Nitrogen‐Containing Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001307] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxim G. Vinogradov
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Olga V. Turova
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky prosp. 119991 Moscow Russian Federation
| |
Collapse
|
16
|
Chen XP, Hou KQ, Zhou F, Chan ASC, Xiong XF. Organocatalytic Asymmetric Synthesis of Benzothiazolopyrimidines via [4 + 2] Cyclization of 2-Benzothiazolimines and Aldehydes. J Org Chem 2021; 86:1667-1675. [DOI: 10.1021/acs.joc.0c02499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Albert S. C. Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Xiang Y, Luo P, Hao T, Xiong W, Song X, Ding Q. Copper-mediated formal [5+1] annulation of 2-vinylanilines and glyoxylic acid: A facile approach for the synthesis of 4-arylated quinolines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Jiao M, Gao J, Fang X. Enantioselective Synthesis of 4-Cyanotetrahydroquinolines via Ni-Catalyzed Hydrocyanation of 1,2-Dihydroquinolines. Org Lett 2020; 22:8566-8571. [PMID: 33085493 DOI: 10.1021/acs.orglett.0c03171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Ni-catalyzed asymmetric hydrocyanation that enables the formation of 4-cyanotetrahydroquinolines in good yields with excellent enantioselectivities is presented herein. A variety of functional groups are well-tolerated, and a gram-scale reaction supports the synthetic potential of the transformation. Additionally, several crucial intermediates for pharmaceutically active agents, including a PGD2 receptor antagonist, are now accessible through asymmetric synthesis using this new protocol.
Collapse
Affiliation(s)
- Mingdong Jiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
19
|
Hou KQ, Zhou F, Chen XP, Ge Y, Chan ASC, Xiong XF. Asymmetric Synthesis of Oxindole-Derived Vicinal Tetrasubstituted Acyclic Amino Acid Derivatives by the Mannich-Type Reaction. J Org Chem 2020; 85:9661-9671. [PMID: 32603113 DOI: 10.1021/acs.joc.0c00981] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic asymmetric Mannich-type reaction of 3-hydroxy/3-aminooxindoles with 2-aminoacrylates to afford oxindole-derived acyclic amino acid derivatives bearing vicinal tetrasubstituted stereocenters is reported. (DHQ)2PHAL (4g) and quinine-derived squaramide (4d) were identified as efficient catalysts. Transformations of the Mannich-type reaction products highlight the utility of this synthetic strategy.
Collapse
Affiliation(s)
- Ke-Qiang Hou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Ping Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Ge
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Albert S C Chan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao-Feng Xiong
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Chakraborty B, Kar A, Chanda R, Jana U. Application of the Povarov Reaction in Biaryls under Iron Catalysis for the General Synthesis of Dibenzo[ a, c]Acridines. J Org Chem 2020; 85:9281-9289. [PMID: 32588630 DOI: 10.1021/acs.joc.0c01300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A modified Povarov reaction involving 2'-alkynylbiaryl-2-carbaldehydes and aryl amines with tandem oxidation was performed using catalytic FeCl3. The outcome was an efficient general synthesis of dibenzo[a,c]acridines with moderate to high yields. This method offers simplicity in the preparation of substrates, diverse substrate scope, and high atom economy. The generality of the protocol was verified by synthesizing a tribenzo[a,c,h]acridine derivative. Photophysical properties of the synthesized compounds were also studied. The compounds absorb UV light typically in the range 230-330 nm and emit in the visible range of 400-420 nm.
Collapse
Affiliation(s)
- Baitan Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Rupsa Chanda
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| |
Collapse
|
21
|
Mandal S, Saha S, Jana CK. Diastereoselective and Reversed Regioselective Annulations of N-Alkyl Anilines to Julolidines and Lilolidines. Org Lett 2020; 22:4883-4887. [PMID: 32519864 DOI: 10.1021/acs.orglett.0c01731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A three-component annulation reaction of N-alkyl anilines, cyclic 1,3-dicarbonyl compounds, and aryl aldehydes to julolidines and lilolidines is reported. The 6π-electrocyclization enabled the annulation to proceed with reversed regioselectivity as compared with the annulation that occurs in the Povarov reaction. Both cyclic and acyclic N-alkyl anilines participated in the reaction to provide a wide range of julolidines and lilolidines as the single regio- and diastereoisomers in good to excellent yields.
Collapse
Affiliation(s)
- Sumana Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 780139, India
| | - Subhajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 780139, India
| | - Chandan K Jana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 780139, India
| |
Collapse
|