1
|
Zhang X, Ni T, Chang M, Li W, Xu X. Palladium-catalyzed oxidative cycloaddition of 1-indanones and internal aryl alkynes toward benzo[ c]fluorenone derivatives. Chem Commun (Camb) 2025; 61:5186-5189. [PMID: 40071708 DOI: 10.1039/d4cc06591c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
The palladium-catalyzed dehydrogenative [4+2] annulation of 1-indanones with alkynes has been reported. In this protocol, the palladium-catalyzed desaturation of 1-indanones to indenones occurs, followed by the palladium catalyzed oxidative cyclization of indenones with alkynes, generating diverse benzo[c]fluorenone derivatives in satisfactory yields and regioselectivity.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Tongtong Ni
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
2
|
Wang X, Yue D, Yang C, Xu M, Chang L, Geng C, Duan S, Shen X. La(OTf) 3-Catalyzed Benzannulation of 2-Arylidene-1 H-indene-1,3(2 H)-diones with Enamino Esters: Direct Access to Functionalized Fluorenone Derivatives. J Org Chem 2025; 90:3825-3833. [PMID: 40052733 DOI: 10.1021/acs.joc.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An attractive method for the preparation of functional fluorenone derivatives has been developed via La(OTf)3-catalyzed benzannulation of 2-arylidene-1H-indene-1,3(2H)-diones with enamino esters. The reaction involves Michael addition, intramolecular cyclization, dehydration, and aromatization in a one-step process and affords a wide range of functional fluorenone derivatives in moderate to good yields. Moreover, this protocol provides several advantages, including broad substrate scope, readily available materials, high atom economy, and applicability for large-scale synthesis.
Collapse
Affiliation(s)
- Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Dan Yue
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Changhui Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Mingde Xu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Longguiyu Chang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Chunyan Geng
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|
3
|
Zhang X, Chang M, Ni T, Zhang X, Zhao Q, Li W, Li T. Dehydrogenative [4 + 2] Annulation of 1-Indanones with Alkynes Enabled by In-Situ-Generated Nickel Hydride. Org Lett 2024; 26:6619-6624. [PMID: 39072679 DOI: 10.1021/acs.orglett.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A practical and effective nickel-catalyzed dehydrogenative [4 + 2] annulation of 1-indanones with alkynes was reported. In this protocol, nickel-catalyzed desaturation of 1-indanones and nickel hydride catalyzed coupling with alkynes were first incorporated. A cyclopentadiene-type nickel hydride species was generated in situ via β-H elimination, and they subsequently reacted with a wide variety of alkynes to afford various benzo[a]fluorenone derivatives in good yields and regioselectivity.
Collapse
Affiliation(s)
- Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengfan Chang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Tongtong Ni
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xuhan Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiang Zhao
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenguang Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
4
|
Halford-McGuff JM, Varga M, Cordes DB, McKay AP, Watson AJB. Modular Synthesis of Complex Benzoxaboraheterocycles through Chelation-Assisted Rh-Catalyzed [2 + 2 + 2] Cycloaddition. ACS Catal 2024; 14:1846-1854. [PMID: 38327642 PMCID: PMC10845118 DOI: 10.1021/acscatal.3c05766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Benzoxaboraheterocycles (BOBs) are moieties of increasing interest in the pharmaceutical industry; however, the synthesis of these compounds is often difficult or impractical due to the sensitivity of the boron moiety, the requirement for metalation-borylation protocols, and lengthy syntheses. We report a straightforward, modular approach that enables access to complex examples of the BOB framework through a Rh-catalyzed [2 + 2 + 2] cycloaddition using MIDA-protected alkyne boronic acids. The key to the development of this methodology was overcoming the steric barrier to catalysis by leveraging chelation assistance. We show the utility of the method through synthesis of a broad range of BOB scaffolds, mechanistic information on the chelation effect, intramolecular alcohol-assisted BMIDA hydrolysis, and linear/cyclic BOB limits as well as comparative binding affinities of the product BOB frameworks for ribose-derived biomolecules.
Collapse
Affiliation(s)
- John M. Halford-McGuff
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Marek Varga
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - David B. Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Aidan P. McKay
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Allan J. B. Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
5
|
Halford-McGuff JM, Slawin AMZ, Watson AJB. Steric Parameterization Delivers a Reciprocally Predictive Model for Substrate Reactivity and Catalyst Turnover in Rh-Catalyzed Diyne-Alkyne [2 + 2 + 2] Cycloadditions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- John M. Halford-McGuff
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - Alexandra M. Z. Slawin
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - Allan J. B. Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| |
Collapse
|
6
|
Llobat A, Escorihuela J, Ramírez de Arellano C, Fustero S, Medio-Simón M. Intramolecular rhodium-catalysed [2 + 2 + 2] cycloaddition of linear chiral N-bridged triynes: straightforward access to fused tetrahydroisoquinoline core. Org Biomol Chem 2022; 20:2433-2445. [PMID: 35274117 DOI: 10.1039/d2ob00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A route for the preparation of merged symmetrical tetrahydroisoquinolines with central chirality through a rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition involving enantiopure triynes as substrates is described. The results show that linear triynes lacking a 3-atom tether can undergo efficient cyclisation. The N-tethered 1,7,13-triynes used in our approach were easily prepared from readily accessible chiral homopropargyl amides, the basic building blocks in our approach, which were efficiently obtained by diastereoselective addition of propargyl magnesium bromide to Ellman imines. Additional substitution at the benzene rings could be attained when substituted triynes at the terminal triple bonds were employed, giving access to more complex tetrahydroisoquinolines after the rhodium-catalyzed intramolecular [2 + 2 + 2] cycloaddition. Among the different transition-metal catalysts, the Wilkinson complex (RhCl(PPh3)3) afforded higher yields in the cyclisation of linear triynes; however, triynes bearing a Br substituent at the terminal positions underwent the cyclisation more efficiently in the presence of [RhCl(CO)2]2.
Collapse
Affiliation(s)
- Alberto Llobat
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Carmen Ramírez de Arellano
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Santos Fustero
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Mercedes Medio-Simón
- Departamento de Química Orgánica, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
7
|
Large B, Prim D. On the Shape and Synthesis of Extended Fluorenones: Recent Advances and Upcoming Challenges. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin Large
- University of York Department of Chemistry YO10 5DD York United Kingdom
| | - Damien Prim
- ILV Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| |
Collapse
|
8
|
Ratovelomanana-Vidal V, Matton P, Huvelle S, Haddad M, Phansavath P. Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1719831] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractMetal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.1 Introduction2 Formation of Carbocycles2.1 Intermolecular Reactions2.1.1 Cyclotrimerization of Alkynes2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions3 Formation of Heterocycles3.1 Cycloaddition of Alkynes with Nitriles3.2 Cycloaddition of 1,6-Diynes with Cyanamides3.3 Cycloaddition of 1,6-Diynes with Selenocyanates3.4 Cycloaddition of Imines with Allenes or Alkenes3.5 Cycloaddition of (Thio)Cyanates and Isocyanates3.6 Cycloaddition of 1,3,5-Triazines with Allenes3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions4 Conclusion
Collapse
|
9
|
Amatore M, Parrain J, Commeiras L. Alkyne Surrogates in Cycloaddition Reactions for the Preparation of Molecules of Interest. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muriel Amatore
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | - Jean‐Luc Parrain
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | | |
Collapse
|
10
|
Ahmad SAZ, Jena TK, Khan FA. Alkyl Enol Ethers: Development in Intermolecular Organic Transformation. Chem Asian J 2021; 16:1685-1702. [PMID: 33979009 DOI: 10.1002/asia.202100277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Indexed: 01/03/2023]
Abstract
Alkyl enol ethers (AEE) are versatile synthetic intermediates with a unique reactivity pattern. This review article summarizes the synthesis of AEE as well as its reactivity and how enol ether undergoes intermolecular reactions for various bond formation, leading to the construction of several useful organic molecules. The synthetic applications of alkyl enol ethers towards intermolecular bond-forming reactions include metal-catalyzed reactions, cycloaddition and heterocycle formation as well as rwactions in the field of natural products synthesis. The achievement of these impressive transformations prove the countless synthetic potential of AEE. The main objective of this review is to bring attentiveness among synthetic chemists to show how AEE extensively can be used to react with both electrophiles as well as nucleophiles, thereby behaving as an ambiphilic reactant. We trust that the unique reactivity pattern of alkyl enol ethers and the fundamental mechanistic idea can attract chemists in AEE chemistry. Exclusively, intermolecular reactions of AEE with other functionalized moieties have not been reviewed to the best of our knowledge.
Collapse
Affiliation(s)
- Sarwat Asma Ziya Ahmad
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Tapan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Faiz Ahmed Khan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| |
Collapse
|
11
|
Shkoor M, Bayari R. DMAP-Catalyzed Reaction of Diethyl 1,3-Acetonedicarboxylate with 2-Hydroxybenzylideneindenediones: Facile Synthesis of Fluorenone-Fused Coumarins. Synlett 2021. [DOI: 10.1055/a-1385-2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe base-catalyzed reaction of diethyl 1,3-acetonedicarboxylate with 2-hydroxybenzylidene indenediones was studied. The reaction provides a facile and expeditious protocol for the synthesis of natural product inspired fluorenone-fused coumarins in good to very good yields. This process resembles a combination of domino Michael–intramolecular Knoevenagel–aromatization–lactonization reactions in a single step. Although this reaction operates with many bases, the best yields were obtained with DMAP as a catalyst. This protocol could open new potential avenues for the synthesis of fused coumarins by the reaction of substituted β-keto esters with different 2-(2-hydroxybenzylidenes) of 1,3-dicarbonyl compounds.
Collapse
|
12
|
Aida Y, Nogami J, Sugiyama H, Uekusa H, Tanaka K. Enantioselective Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)-Based Planar Chiral Bent Cyclophanes by Rhodium-Catalyzed [2+2+2] Cycloaddition. Chemistry 2020; 26:12579-12588. [PMID: 32350943 DOI: 10.1002/chem.202001450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Indexed: 11/08/2022]
Abstract
The enantioselective synthesis of polycyclic aromatic hydrocarbon (PAH)-based planar chiral cyclophanes was achieved for the first time by the rhodium-catalyzed intramolecular regio- and enantioselective [2+2+2] cycloaddition of tethered diyne-benzofulvenes followed by stepwise oxidative transformations. The thus synthesized planar chiral bent cyclophanes, that possess bent p-terphenyl- and 9-fluorenone-cores, were converted to 9-fluorenol-based ones with excellent ee values of >99 % by diastereoselective 1,2-reduction. These 9-fluorenol-based cyclophanes exhibited high fluorescence quantum yields, which were significantly higher than that of an acyclic reference molecule (78-82 % vs. 48 %). The bending effect on the chiroptical property was also examined, which revealed that the anisotropy factors (gabs values) for electronic circular dichroism (ECD) of these 9-fluorenol-based planar chiral bent cyclophanes increase as the tether length becomes shorter.
Collapse
Affiliation(s)
- Yukimasa Aida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
13
|
Patel S, Rathod B, Regu S, Chak S, Shard A. A Perspective on Synthesis and Applications of Fluorenones. ChemistrySelect 2020. [DOI: 10.1002/slct.202002695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Bhagyashri Rathod
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Siddulu Regu
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Shivam Chak
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| |
Collapse
|