1
|
Thakur D, Sushmita, Meena SA, Verma AK. Advancement in Synthetic Strategies of Phosphorus Heterocycles: Recent Progress from Synthesis to Emerging Class of Optoelectronic Materials. CHEM REC 2024; 24:e202400058. [PMID: 39136671 DOI: 10.1002/tcr.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Indexed: 08/28/2024]
Abstract
Organophosphorus heterocycles have long been acknowledged for their significant potential across diverse fields, including catalysis, material science, and drug development. Incorporating phosphorus functionalities into organic compounds offers a means to effectively tailor their medicinal properties, augment biological responses, and enhance selectivity and bioavailability. The distinctive physical and photoelectric characteristics of phosphorus-containing conjugated compounds have garnered considerable interest as promising materials for organic optoelectronics. These compounds find extensive utility in various applications such as light-emitting diodes, photovoltaic cells, phosphole-based fluorophores, and semiconductors.
Collapse
Affiliation(s)
| | - Sushmita
- Netaji Subhas University of Technology, Delhi, 110078
| | | | | |
Collapse
|
2
|
Čubiňák M, Varma N, Oeser P, Pokluda A, Pavlovska T, Cibulka R, Sikorski M, Tobrman T. Tuning the Photophysical Properties of Flavins by Attaching an Aryl Moiety via Direct C-C Bond Coupling. J Org Chem 2023; 88:218-229. [PMID: 36525315 DOI: 10.1021/acs.joc.2c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Palladium-catalyzed Suzuki reactions of brominated flavin derivatives (5-deazaflavins, alloxazines, and isoalloxazines) with boronic acids or boronic acid esters that occur readily under mild conditions were shown to be an effective tool for the synthesis of a broad range of 7/8-arylflavins. In general, the introduction of an aryl/heteroaryl group by means of a direct C-C bond has been shown to be a promising approach to tuning the photophysical properties of flavin derivatives. The aryl substituents caused a bathochromic shift in the absorption spectra of up to 52 nm and prolonged the fluorescence lifetime by up to 1 order of magnitude. Moreover, arylation of flavin derivatives decreased their ability to generate singlet oxygen.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Naisargi Varma
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Petr Oeser
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Tetiana Pavlovska
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614Poznań, Poland
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28Prague 6, Czech Republic
| |
Collapse
|
3
|
Xu S, Nishimura K, Saito K, Hirano K, Miura M. Palladium-catalysed C–H arylation of benzophospholes with aryl halides. Chem Sci 2022; 13:10950-10960. [PMID: 36320684 PMCID: PMC9491221 DOI: 10.1039/d2sc04311d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
A palladium-catalysed C–H arylation of benzophospholes with aryl halides has been developed. The reaction with aryl iodides and bromides proceeds well even under phosphine ligand-free Pd(OAc)2 catalysis whereas the Pd(PCy3)2 is effective for the coupling with less reactive aryl chlorides. The optimal conditions are also applicable to the double arylations with organic dihalides and annulation reaction with ortho-dihalogenated benzenes, making the corresponding benzophosphole-based acceptor–donor–acceptor-type molecules and highly condensed heteroacene-type molecules of potent interest in materials chemistry. Although there are many reports of catalytic C–H functionalisations of related benzoheteroles such as indoles, benzothiophenes, and benzofurans, this is the first successful example of the catalytic direct C–H transformation of benzophospholes, to the best of our knowledge. The preliminary optoelectronic properties of some newly synthesized benzophosphole derivatives are also investigated. A palladium-catalysed C–H arylation of benzophospholes with aryl halides has been developed to form the corresponding acceptor–donor–acceptor-type molecules and highly condensed heteroacene-type molecules of potent interest in material chemistry.![]()
Collapse
Affiliation(s)
- Shibo Xu
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| | - Kazutoshi Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Kosuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
4
|
Čubiňák M, Bigeon J, Galář P, Ondič L, Tobrman T. The Synthesis of Tetrasubstituted Cycloalkenes Bearing π‐Conjugated Substituents and Their Optical Properties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - John Bigeon
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 6 Czech Republic
| | - Pavel Galář
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 6 Czech Republic
| | - Lukáš Ondič
- Institute of Physics Czech Academy of Sciences Cukrovarnická 10 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
5
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
6
|
Koudelka J, Tobrman T. Synthesis of 2‐Substituted Cyclobutanones by a Suzuki Reaction and Dephosphorylation Sequence. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jakub Koudelka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
7
|
Distinct roles of Ag(I) and Cu(II) as cocatalysts in the intramolecular cyclization of N-methyl-N-phenylanthranilic acid: A theoretical investigation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Edlová T, Dvořáková H, Eigner V, Tobrman T. Substrate-Controlled Regioselective Bromination of 1,2-Disubstituted Cyclobutenes: An Application in the Synthesis of 2,3-Disubstituted Cyclobutenones. J Org Chem 2021; 86:5820-5831. [PMID: 33819050 DOI: 10.1021/acs.joc.1c00261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Easily available disubstituted cyclobutenes were regioselectively halogenated at the allylic position by means of a reaction with bromine. The regioselectivity of bromination is controlled by the presence of a carbocation-stabilizing group. The prepared disubstituted 3-bromocyclobutenes were converted into the corresponding disubstituted cyclobutenones. On the basis of the performed experiments, the mechanism behind the bromination reaction was also proposed.
Collapse
Affiliation(s)
- Tereza Edlová
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Hana Dvořáková
- Laboratory of NMR Spectroscopy, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Václav Eigner
- Department of Solid State Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
9
|
Čubiňák M, Tobrman T. Room-Temperature Negishi Reaction of Trisubstituted Vinyl Phosphates for the Synthesis of Tetrasubstituted Alkenes. J Org Chem 2020; 85:10728-10739. [PMID: 32674569 DOI: 10.1021/acs.joc.0c01254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study investigated the ability of bromovinyl phosphates to react with organozinc reagents at room temperature during palladium-catalyzed reactions. It was determined that both the bromine atom and the phosphate group were successfully substituted by means of the reaction with the organozinc reagents, thereby allowing for the synthesis of cyclic and acyclic tetrasubstituted double bonds. The low stability of the organozinc compounds in an acidic environment was exploited to accomplish the synthesis of alkenes using a one-pot, two-step experimental setup.
Collapse
Affiliation(s)
- Marek Čubiňák
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Tomáš Tobrman
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|