1
|
Patil KS, Reddappa S, Kumar R, Mane MV, Bose SK. Synthesis of 1,2-Bis- and 1,1,2-Tris-Borylalkanes under Transition Metal-Free and Solvent-Free Conditions. J Org Chem 2025; 90:4140-4148. [PMID: 40105810 DOI: 10.1021/acs.joc.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Multi(boronate) esters are useful building blocks in modern chemical synthesis. Herein, we have developed an efficient, transition metal- and solvent-free method for the regioselective boration of alkenes and alkynes. The alkali metal Lewis base (NaOMe)-mediated reactions, using bis(pinacolato)diboron (B2pin2) as the boron reagent, resulted in the diboration of alkenes at room temperature and the triboration of alkynes at 60 °C to produce synthetically useful alkyl 1,2-bis(boronate) esters and 1,1,2-tris(boronate) esters, respectively, in excellent yields and with high regioselectivity. This environmentally benign protocol demonstrates a broad substrate scope and good functional group tolerance for alkenes and alkynes. The gram-scale reaction further highlights the practical usefulness of the method. The proposed reaction pathway has been evaluated based on stoichiometric reactions and DFT studies.
Collapse
Affiliation(s)
- Kiran S Patil
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Shivakumar Reddappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Rakesh Kumar
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
2
|
Kubota K, Kawamura S, Jiang J, Maeda S, Ito H. Mechanochemical generation of aryl barium nucleophiles from unactivated barium metal. Chem Sci 2024:d4sc05361c. [PMID: 39371463 PMCID: PMC11447672 DOI: 10.1039/d4sc05361c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Organobarium reagents are of interest as homologues of the Grignard reagents based on organomagnesium compounds due to their unique reactivity as well as regio- and stereoselectivity. However, reactions involving organobarium reagents are less developed in comparison to reactions involving Grignard reagents due to the lack of a simple and economical synthetic method and their high reactivity. To the best of our knowledge, there is no established method for the direct synthesis of organobarium compounds from commercially available bulk barium metal and organic halides. So far, the generation of organobarium compounds usually requires the use of activated barium (Rieke barium), which significantly reduces the practical utility of organobarium reagents and hinders the development of new organobarium-mediated transformations. Here, we present a mechanochemical strategy based on ball-milling that facilitates the direct generation of various aryl barium nucleophiles from commercially available unactivated barium metal and aryl halides without complicated pre-activation processes. Our simple mechanochemical protocol allows the rapid development of novel carbon-silicon-bond-forming reactions with hydrosilanes mediated by aryl barium nucleophiles; importantly, these reactions are difficult to achieve using other Grignard-type carbon nucleophiles. To the best of our knowledge, this is the first example of a nucleophilic substitution reaction involving an aryl barium species. Furthermore, this mechanochemical strategy established the first example of a nucleophilic addition to a carbonyl compound involving an aryl barium nucleophile. Preliminary theoretical calculations using the artificial force-induced reaction (AFIR) method to reveal the reaction mechanism of the hydrosilane arylation are also described.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Sota Kawamura
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
3
|
Yamaguchi H, Takahashi F, Kurogi T, Yorimitsu H. Reductive anti-Dizincation of Arylacetylenes. Chem Asian J 2024; 19:e202400384. [PMID: 38647096 DOI: 10.1002/asia.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Arylacetylenes undergo anti-1,2-dizincation to afford trans-1,2-dizincioalkenes. The process employs sodium dispersion as a reducing agent and zinc chloride TMEDA complex as a reduction-resistant zinc electrophile. This reductive anti-dizincation contrasts with the conventional additive syn-dimetalation like silylzincation. The resulting dizincated alkenes undergo the cross-coupling to yield multi-substituted alkenes stereoselectively.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Fukazawa M, Takahashi F, Kurogi T, Yorimitsu H. Sodium-Mediated Reductive C-C Bond Cleavage Assisted by Boryl Groups. Chem Asian J 2024; 19:e202400100. [PMID: 38385830 DOI: 10.1002/asia.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
In contrast to the well-established oxidative C=C double bond cleavage to give the corresponding carbonyl compounds, little is known about reductive C=C double bond cleavage. Here we report that C-C single bond cleavage in 1,2-diaryl-1,2-diborylethanes proceeds by reduction with sodium metal to yield α-boryl benzylsodium species. In combination with our previous reductive diboration of stilbenes, the overall transformation represents reductive cleavage of the C=C double bonds of stilbene to yield α-boryl-α-sodiated toluenes. This reductive two-step C=C double bond cleavage is applicable to ring-opening or ring-expansion reactions of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| |
Collapse
|
5
|
Anderson DE, Tortajada A, Hevia E. New Frontiers in Organosodium Chemistry as Sustainable Alternatives to Organolithium Reagents. Angew Chem Int Ed Engl 2024; 63:e202313556. [PMID: 37801443 DOI: 10.1002/anie.202313556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
With their highly reactive respective C-Na and N-Na bonds, organosodium and sodium amide reagents could be viewed as obvious replacements or even superior reagents to the popular, widely utilised organolithiums. However, they have seen very limited applications in synthesis due mainly to poor solubility in common solvents and their limited stability. That notwithstanding in recent years there has been a surge of interest in bringing these sustainable metal reagents into the forefront of organometallics in synthesis. Showcasing the growth in utilisation of organosodium complexes within several areas of synthetic chemistry, this Minireview discusses promising new methods that have been recently reported with the goal of taming these powerful reagents. Special emphasis is placed on coordination and aggregation effects in these reagents which can impart profound changes in their solubility and reactivity. Differences in observed reactivity between more nucleophilic aryl and alkyl sodium reagents and the less nucleophilic but highly basic sodium amides are discussed along with current mechanistic understanding of their reactivities. Overall, this review aims to inspire growth in this exciting field of research to allow for the integration of organosodium complexes within common important synthetic transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Miwa K, Aoyagi S, Amaya T, Sasamori T, Morisako S, Kurogi T, Yorimitsu H. Multiply exo-Methylated Corannulenes. Chemistry 2023; 29:e202301557. [PMID: 37302982 DOI: 10.1002/chem.202301557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
The curved π-conjugated surface of bowl-shaped corannulene has been multiply methylated to form exo-di-, -tetra-, and -hexamethylated corannulenes. The multimethylations became possible through in-situ iterative reduction/methylation sequences that involve the reduction of corannulenes using sodium to form the anionic corannulene species, and the subsequent SN 2 reaction of the anionic species with reduction-resistant dimethyl sulfate. X-ray diffraction analyses, NMR, MS, UV-Vis measurements, and DFT calculations have revealed the molecular structures of the multimethylated corannulenes and the sequence of the multimethylation. This work has the potential to contribute to the controlled synthesis and characterizations of multifunctionalized fullerenes.
Collapse
Affiliation(s)
- Kazuhira Miwa
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Toru Amaya
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Takahiro Sasamori
- Division of Chemistry Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Shogo Morisako
- Division of Chemistry Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Takashi Kurogi
- Department of Chemistry Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
7
|
Halder I, Nair AM, Giri S, Volla CMR. Diphenyl Ditelluride: An Unconventional Reducing Agent in the Sulfonylative Cascade of Alkynyl Cyclohexadienones. Org Lett 2023; 25:826-831. [PMID: 36722745 DOI: 10.1021/acs.orglett.2c04367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report a reductive hydrazo-sulfonylative difunctionalization cascade of alkynyl cyclohexadienones employing PhTeTePh as an uncommon reducing agent. Diphenyl ditelluride is a commercially available solid with a good solubility profile in most organic solvents, and this is the first report illustrating it as a reducing agent. The protocol afforded a variety of difunctionalized dihydrochromenones and dihydrobenzofuranones in good yields under relatively mild conditions. The reactions were scalable, and mechanistic studies were conducted to probe the reaction mechanism. Additionally, photophysical studies of the products were carried out, which revealed that they had significant absorption (400-450 nm) and emission (520-570 nm) in the visible region.
Collapse
Affiliation(s)
- Indranil Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samyadev Giri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Jiang Y, Yorimitsu H. Taming Highly Unstable Radical Anions and 1,4-Organodilithiums by Flow Microreactors: Controlled Reductive Dimerization of Styrenes. JACS AU 2022; 2:2514-2521. [PMID: 36465543 PMCID: PMC9709950 DOI: 10.1021/jacsau.2c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 05/21/2023]
Abstract
The reduction of styrenes with lithium arenide in a flow microreactor leads to the instantaneous generation of highly unstable radical anions that subsequently dimerize to yield the corresponding 1,4-organodilithiums. A flow reactor with fast mixing is essential for this reductive dimerization as the efficiency and selectivity are low under batch conditions. A series of styrenes undergo dimerization, and the resulting 1,4-organodilithiums are trapped with various electrophiles. Trapping with divalent electrophiles affords precursors for useful yet less accessible cyclic structures, for example, siloles from dichlorosilanes. Thus, we highlight the power of single-electron reduction of unsaturated compounds in flow microreactors for organic synthesis.
Collapse
|
9
|
Huang M, Hu J, Shi S, Friedrich A, Krebs J, Westcott SA, Radius U, Marder TB. Selective, Transition Metal-free 1,2-Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry 2022; 28:e202200480. [PMID: 35179269 PMCID: PMC9314653 DOI: 10.1002/chem.202200480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Defunctionalization of readily available feedstocks to provide alkenes for the synthesis of multifunctional molecules represents an extremely useful process in organic synthesis. Herein, we describe a transition metal-free, simple and efficient strategy to access alkyl 1,2-bis(boronate esters) via regio- and diastereoselective diboration of secondary and tertiary alkyl halides (Br, Cl, I), tosylates, and alcohols. Control experiments demonstrated that the key to this high reactivity and selectivity is the addition of a combination of potassium iodide and N,N-dimethylacetamide (DMA). The practicality and industrial potential of this transformation are demonstrated by its operational simplicity, wide functional group tolerance, and the late-stage modification of complex molecules. From a drug discovery perspective, this synthetic method offers control of the position of diversification and diastereoselectivity in complex ring scaffolds, which would be especially useful in a lead optimization program.
Collapse
Affiliation(s)
- Mingming Huang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Shasha Shi
- School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816China
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
10
|
Wang S, Kaga A, Kurogi T, Yorimitsu H. Reductive Ring Opening of Arylcyclopropanecarboxamides Accompanied by Borylation and Enolate Formation. Org Lett 2022; 24:1105-1109. [PMID: 35076241 DOI: 10.1021/acs.orglett.2c00084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of arylcyclopropanecarboxamides with a sodium dispersion in the presence of methoxypinacolborane as a reduction-resistant electrophile leads to reductive cleavage of the cyclopropane ring followed by instant trapping with the boron electrophile to yield the enolates of γ-aryl-γ-borylalkanamides. The enolates react further with a different electrophile to yield the corresponding α-substituted amides with anti selectivity.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsushi Kaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Miwa K, Aoyagi S, Sasamori T, Morisako S, Ueno H, Matsuo Y, Yorimitsu H. Facile Multiple Alkylations of C 60 Fullerene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020450. [PMID: 35056764 PMCID: PMC8779915 DOI: 10.3390/molecules27020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
The reduction of fullerene (C60) with sodium dispersion in the presence of an excess amount of dipropyl sulfate was found to yield highly propylated fullerene, C60(nC3H7)n (max. n = 24), and C60(nC3H7)20 was predominantly generated as determined by mass spectroscopy.
Collapse
Affiliation(s)
- Kazuhira Miwa
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Correspondence: (S.A.); (T.S.); Tel.: +81-52-872-5061 (S.A.); +81-29-853-4412 (T.S.)
| | - Takahiro Sasamori
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Tsukuba Research Center for Energy Materials Sciences (TREMS), Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
- Correspondence: (S.A.); (T.S.); Tel.: +81-52-872-5061 (S.A.); +81-29-853-4412 (T.S.)
| | - Shogo Morisako
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Tsukuba Research Center for Energy Materials Sciences (TREMS), Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| | - Hiroshi Ueno
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Miyagi, Japan;
| | - Yutaka Matsuo
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan;
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
12
|
Asako S, Takahashi I, Kurogi T, Murakami Y, Ilies L, Takai K. Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. CHEM LETT 2022. [DOI: 10.1246/cl.210546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ikko Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kurogi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Murakami
- KOBELCO ECO-Solutions Co., Ltd., 4-78-1 Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Koyama S, Takahashi F, Saito H, Yorimitsu H. Reductive Cleavage of Propargylic Ethers with Alkali Metal: Application to the Synthesis of Allenylboronates. Org Lett 2021; 23:8590-8594. [PMID: 34694816 DOI: 10.1021/acs.orglett.1c03316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of propargylic ethers with sodium dispersion in the presence of lithium iodide results in the generation of the corresponding carbanion species via cleavage of the propargylic C-O bond. The anionic species react with trimethoxyborane to yield the allenylboronates including highly substituted ones that are difficult to synthesize.
Collapse
Affiliation(s)
- Shunsuke Koyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Zhang T, Zheng S, Kobayashi T, Maekawa H. Regioselective Silylations of Propargyl and Allyl Pivalates through Ca-Promoted Reductive C(sp 3)-O Bond Cleavage. Org Lett 2021; 23:7129-7133. [PMID: 34473522 DOI: 10.1021/acs.orglett.1c02532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A practical protocol for the regioselective preparation of 3-phenylpropargylsilanes and 3-phenylallylsilanes in yields of 36-77 and 48-86%, respectively, from readily accessible 3-phenylpropargyl and 1-phenylallyl pivalates was developed through reductive C(sp3)-O bond cleavage. This method represents the first example of the direct application of vastly abundant calcium granules to a reductive coupling reaction. A broad range of propargylsilanes and allylsilanes are simply prepared using easy-to-handle pivalates and chlorotrimethylsilane under mild catalyst-free and additive-free conditions.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Suhua Zheng
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Taro Kobayashi
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Hirofumi Maekawa
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
15
|
Tadros J, Dankers C, Aldrich‐Wright JR, Polyzos A, Gordon CP. A Solid‐Phase Assisted Flow Approach to
In Situ
Wittig‐Type Olefination Coupling. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joseph Tadros
- School of Science Western Sydney University 1797 Locked Bag Penrith South DC Australia
| | - Christian Dankers
- School of Science Western Sydney University 1797 Locked Bag Penrith South DC Australia
| | - Janice R. Aldrich‐Wright
- School of Science Western Sydney University 1797 Locked Bag Penrith South DC Australia
- Nanoscale Organisation and Dynamics Group Western Sydney University 1797 Locked Bag Penrith South DC Australia
| | - Anastasios Polyzos
- CSIRO Manufacturing The Commonwealth Scientific and Industrial Research Organisation Research Way 3168 Clayton Victoria Australia
- School of Chemistry The University of Melbourne 3010 Melbourne Victoria Australia
| | - Christopher P. Gordon
- School of Science Western Sydney University 1797 Locked Bag Penrith South DC Australia
- Nanoscale Organisation and Dynamics Group Western Sydney University 1797 Locked Bag Penrith South DC Australia
- Molecular Medicine Research Group Nanoscale Organisation and Dynamics Group Western Sydney University School of Medicine Narellan Road & Gilchrist Drive 2560 Campbelltown NSW Australia
| |
Collapse
|
16
|
Fukazawa M, Takahashi F, Yorimitsu H. Sodium-Promoted Borylation of Polycyclic Aromatic Hydrocarbons. Org Lett 2021; 23:4613-4617. [PMID: 34076437 DOI: 10.1021/acs.orglett.1c01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sodium dispersion promotes the reductive borylation of polycyclic aromatic hydrocarbons (PAHs) with MeOBpin. Anthracenes and phenanthrenes are converted to the corresponding dearomatized diborylated products. The reductive diborylation of naphthalene-based small π-systems yields similar yet unstable products that are oxidized into formal C-H borylation products with unique regioselectivity. Pyrene is converted to 1-borylpyrene without the addition of an oxidant. The latter two reactions represent a new route to useful borylated PAHs that rivals C-X borylation and catalytic C-H borylation.
Collapse
Affiliation(s)
- Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Halogen-sodium exchange enables efficient access to organosodium compounds. Commun Chem 2021; 4:76. [PMID: 36697639 PMCID: PMC9814623 DOI: 10.1038/s42004-021-00513-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used-and are overshadowed by organolithium compounds-because of a lack of convenient and efficient preparation methods. Here we report a halogen-sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking β-hydrogens, which retards undesired reactions, such as Wurtz-Fittig coupling and β-hydrogen elimination, and enables efficient halogen-sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.
Collapse
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| | - Ikko Takahashi
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Hirotaka Nakajima
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
18
|
Ito S, Takahashi F, Yorimitsu H. Defluorinative Diborasodiation of Benzotrifluorides with Bis(pinacolato)Diboron and Sodium. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiori Ito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Fumiya Takahashi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
19
|
Asako S, Ilies L, De PB. Recent Advances in the Use of Sodium Dispersion for Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1478-7061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThis short review describes the recent emergence of organosodium chemistry, motivated by the requirements of modern synthetic chemistry for sustainability, and powered by the use of sodium dispersion, a form of sodium that is commercially available, easy to handle, and has a large active surface area. We present recent methods for the preparation of organosodium compounds using sodium dispersion, and their applications to synthesis. Sodium amides and phosphides are also briefly discussed.1 Introduction2 Sodium Dispersion3 Preparation of Organosodium Compounds3.1 Two-Electron Reduction of Aryl Halides3.2 Halogen–Sodium Exchange3.3 Directed Metalation3.4 Cleavage of C–C and C–Heteroatom Bonds4 Synthetic Applications4.1 Reduction in Combination with a Proton Source4.1.1 Bouveault–Blanc Reduction4.1.2 Birch Reduction4.1.3 Reductive Deuteration4.1.4 Chemoselective Cleavage of Amides and Nitriles4.2 Difunctionalization of Alkenes and Alkynes5 Sodium Amides and Phosphides6 Conclusions and Outlook
Collapse
|
20
|
Snead RF, Nekvinda J, Santos WL. Copper(ii)-catalyzed protoboration of allenes in aqueous media and open air. NEW J CHEM 2021. [DOI: 10.1039/d0nj02010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A copper(ii)-catalyzed internal protoboration of monosubstituted allenes efficiently occurs in water at room temperature and open air to generate 1,1-disubstituted vinyl boronic acid derivatives.
Collapse
Affiliation(s)
- Russell F. Snead
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
21
|
Yorimitsu H, Wang S, Kaga A. On the Order of Addition of Sodium Dispersion in Reductive Diborations of Stilbene and 1,2-Diphenylcyclopropane. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Affiliation(s)
- Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
23
|
Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Sodium-Metal-Promoted Reductive 1,2-syn-Diboration of Alkynes with Reduction-Resistant Trimethoxyborane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shiori Ito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keisuke Nogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Das KK, Paul S, Panda S. Transition metal-free synthesis of alkyl pinacol boronates. Org Biomol Chem 2020; 18:8939-8974. [DOI: 10.1039/d0ob01721c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review systematically outlined the research in the area of transition metal free synthesis of alkyl pinacol boronates, which are versatile and important scaffolds to construct diverse organic compounds.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Swagata Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Santanu Panda
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|