1
|
Bouzbouz S. Fluoride-Catalyzed Cross-Coupling of Silylamides to CF 3-Acrylates: Access to Highly Functionalized Trifluoromethylated and Quaternary Fluorinated Molecular Architectures. Org Lett 2024; 26:6130-6135. [PMID: 39018383 DOI: 10.1021/acs.orglett.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
A direct and simple catalytic coupling of nonfluorinated and fluorinated silylbutenamides with β-CF3 α,β-unsaturated esters mediated by fluoride ion was carried out. The transformation proceeded with excellent yields to afford new, highly functionalized trifluoromethylated and quaternary fluorinated products.
Collapse
Affiliation(s)
- Samir Bouzbouz
- CNRS, University of Rouen, INSA of Rouen, COBRA UMR 6014, 1 rue Lucien Tesnière, 76131 Mont Saint Aignan, France
| |
Collapse
|
2
|
Stojalnikova V, Webster SJ, Liu K, Fletcher SP. Chelation enables selectivity control in enantioconvergent Suzuki-Miyaura cross-couplings on acyclic allylic systems. Nat Chem 2024; 16:791-799. [PMID: 38332329 PMCID: PMC11087250 DOI: 10.1038/s41557-023-01430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/18/2023] [Indexed: 02/10/2024]
Abstract
Asymmetric Suzuki-Miyaura cross-couplings with aryl boronic acids and allylic electrophiles are a powerful method to convert racemic mixtures into enantioenriched products. Currently, enantioconvergent allylic arylations are limited to substrates that are symmetrical about the allylic unit, and the absence of strategies to control regio-, E/Z- and enantioselectivity in acyclic allylic systems is a major restriction. Here, using a system capable of either conjugate addition or allylic arylation, we have discovered the structural features and experimental conditions that allow an acyclic system to undergo chemo- and regioselective, enantioconvergent allylic Suzuki-Miyaura-type arylation. A wide variety of boronic acid coupling partners can be used, and both alkyl and aromatic substituents are tolerated on the allylic unit so that a wide variety of structures can be obtained. Preliminary mechanistic studies reveal that the chelating ability of the ester group is crucial to obtaining high regio- and enantioselectivity. Using this method, we were able to synthesize the natural products (S)-curcumene and (S)-4,7-dimethyl-1-tetralone and the clinically used antidepressant sertraline (Zoloft).
Collapse
Affiliation(s)
| | - Stephen J Webster
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Ke Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Stephen P Fletcher
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Wang Y, Qi M, Lu P, Wang Y. Rh(III)-Catalyzed Reaction of 4-Diazoisochroman-3-imines with (2-Formylaryl)boronic Acids To Access a Straightforward Construction of 5 H-Isochromeno[3,4- c]isoquinolines. J Org Chem 2023; 88:13544-13552. [PMID: 37698421 DOI: 10.1021/acs.joc.3c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
An Rh(III)-catalyzed one-pot synthesis of 5H-isochromeno[3,4-c]isoquinolines from readily available 4-diazoisochroman-3-imines and (2-formylphenyl)boronic acids is reported. The cascade annulation involves a Rh(III)-catalyzed cross-coupling and an intramolecular nucleophilic addition-elimination process. A series of biologically important 5H-isochromeno[3,4-c]isoquinolines were obtained in good to excellent yields. The method can be extended to synthesize 7H-isochromeno[3,4-b]thieno[3,2-d]pyridines and 7H-isochromeno[3,4-b]thieno[2,3-d]pyridines from the corresponding heteroaryl boronic acids.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Minghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
4
|
Tang Z, Kong Y, Qin Y, Chen X, Liu M, Shen L, Kang Y, Gao P. Performance and degradation pathway of florfenicol antibiotic by nitrogen-doped biochar supported zero-valent iron and zero-valent copper: A combined experimental and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132172. [PMID: 37523963 DOI: 10.1016/j.jhazmat.2023.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Fluorinated compounds are a class of organic substances resistant to degradation. Although zero-valent iron (Fe0) has a promising reducing capability, it still fails to degrade fluorine-containing antibiotics (i.e., florfenicol) efficiently. In this study, we applied a simple one-pot pyrolytic approach to synthesize nitrogen-doped biochar supported Fe0 and zero-valent copper (Cu0) composite (Fe/Cu@NBC) and investigated its performance on florfenicol removal. The results clearly showed that approximately 91.4% of florfenicol in the deionized water was removed by Fe/Cu@NBC within 8 h. As the reaction time was extended to 15 d, the total degradation rate of florfenicol reached 96.6%, in which the defluorination and dechlorination rates were 73.2% and 82.1%, respectively. Both experimental results and density functional theory calculation suggested that ∙OH and ·O2- triggered β-fluorine elimination, resulting in defluorination prior to dechlorination. This new finding was distinct from previous viewpoints that defluorination was more difficult to occur than dechlorination. Fe/Cu@NBC also had a favorable performance for removal of florfenicol in surface water. This study provides a new insight into the degradation mechanism and pathway of florfenicol removal in the Fe/Cu@NBC system, which can be a promising alternative for remediation of fluorinated organic compounds in the environment.
Collapse
Affiliation(s)
- Zheng Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqian Chen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Min Liu
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Lu Shen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Yanming Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
5
|
Li Y, Dong Y, Wang X, Li G, Xue H, Xin W, Zhang Q, Guan W, Fu J. Regio-, Site-, and Stereoselective Three-Component Aminofluorination of 1,3-Dienes via Cooperative Silver Salt and Copper Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yujiao Dong
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Guangfu Li
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Huiqing Xue
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wanyang Xin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Echizen K, Taniguchi T, Nishimura T, Maeda K. Well‐Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water‐Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2022; 61:e202202676. [DOI: 10.1002/anie.202202676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
7
|
Echizen K, Taniguchi T, Nishimura T, Maeda K. Well‐Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Water‐Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
8
|
Fujita T, Kobayashi Y, Takahashi I, Morioka R, Ichitsuka T, Ichikawa J. Nickel-Catalyzed Reductive Allyl-Aryl Cross-Electrophile Coupling via Allylic C-F Bond Activation. Chemistry 2021; 28:e202103643. [PMID: 34881467 DOI: 10.1002/chem.202103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/06/2022]
Abstract
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C-F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C-I bonds of the aryl iodides and the C-F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C-F bonds was avoided to permit their transformation.
Collapse
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yutaro Kobayashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ikko Takahashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ryutaro Morioka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomohiro Ichitsuka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi, 983-8551, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
9
|
Casalta C, Gourlaouen C, Bouzbouz S. Iridium(III) Catalyzed Z-Selective Allylic Arylation of α-Fluoro But-1-enoic Acid Amides via β-F-Elimination in Water. Org Lett 2021; 23:8122-8126. [PMID: 34617755 DOI: 10.1021/acs.orglett.1c02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allylic arylation of α-fluoro but-1-enoic acid amides with arylboronic acids was carried out in water by comparing the catalytic activity of iridium(III) and rhodium(III). Ir(III) has shown a strong superiority over Rh(III) to give allyl-aryl coupling products with excellent stereoselectivity in favor of the Z-isomer. The origin of high stereoselectivity is perhaps because of the a coordination of iridium Ir-N or Ir-O.
Collapse
Affiliation(s)
- Clément Casalta
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, UMR 7177 CNRS-Université de Strasbourg, 67070 Strasbourg, France
| | - Samir Bouzbouz
- CNRS, University of Rouen, INSA, COBRA UMR 6014, 76800 Mont Saint Aignan, France
| |
Collapse
|
10
|
Li W, Liu R, Li R, Wang S, Li D, Yang J. Catalyst‐Free and Oxidant‐Free Cascade Difluoroalkylation and Controllable C−F Bond Activation of Aryl Enol Acetates for the Synthesis of β‐Fluoroenones and β‐Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenshuang Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruyan Liu
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruonan Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Shihaozhi Wang
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Dianjun Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| |
Collapse
|
11
|
Cui Y, Zhai Y, Xiao J, Li C, Zheng WF, Huang C, Wu G, Qin A, Lin J, Liu Q, Wang H, Wu P, Xu H, Zheng Y, Ma S. Chirality memory of α-methylene-π-allyl iridium species. Chem Sci 2021; 12:11831-11838. [PMID: 34659722 PMCID: PMC8442685 DOI: 10.1039/d1sc02636d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Chirality is one of the most important types of steric information in nature. In addition to central chirality, axial chirality has been catching more and more attention from scientists. However, although much attention has recently been paid to the creation of axial chirality and the chirality transfer of allenes, no study has been disclosed as to the memory of such an axial chirality. The reason is very obvious: the chiral information is stored over three carbon atoms. Here, the first example of the memory of chirality (MOC) of allenes has been recorded, which was realized via an optically active alkylidene-π-allyl iridium intermediate, leading to a highly stereoselective electrophilic allenylation with amines. Specifically, we have established the transition metal-mediated highly stereoselective 2,3-allenylation of amines by using optically active 2,3-allenyl carbonates under the catalysis of a nonchiral iridium(iii) complex. This method is compatible with sterically bulky and small substituents on both amines and 2,3-allenyl carbonates and furnishes the desired optically active products with a high efficiency of chirality transfer. Further mechanistic experiments reveal that the isomerization of the optically active alkylidene-π-allyl iridium intermediate is very slow. Chirality is one of the most important types of steric information in nature.![]()
Collapse
Affiliation(s)
- Yifan Cui
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Junzhe Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Chaofan Huang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Guolin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Qi Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Penglin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Haibo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yangguangyan Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China masm.fudan.edu.cn.,Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Road Shanghai 200433 P. R. China
| |
Collapse
|
12
|
Wang D, Gao Y, Tong Y, Xiong M, Liang X, Zhu H, Pan Y. Unsymmetrical Disulfides Synthesis
via
Cs
2
CO
3
‐Catalyzed Three‐Component Reaction in Water. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dungai Wang
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuanji Gao
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yunli Tong
- Zhejiang East Asia Pharmaceutical Co. Ltd Zhejiang People's Republic of China
| | - Mingteng Xiong
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xiao Liang
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Heping Zhu
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|