1
|
Wang M, Zhou X, Wang Y, Tian Y, Gou W, Zhang L, Li C. Direct Synthesis of Benzothiazoles and Benzoxazoles from Carboxylic Acids Utilizing ( o-CF 3PhO) 3P as a Coupling Reagent. J Org Chem 2024; 89:16542-16552. [PMID: 39449154 DOI: 10.1021/acs.joc.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
A general and efficient method for the direct synthesis of benzothiazoles and benzoxazoles from carboxylic acids with 2-aminobenzenethiols or 2-aminophenols using (o-CF3PhO)3P as a simple coupling reagent has been developed. Diverse benzothiazoles and benzoxazoles were synthesized in moderate to excellent yields. And the gram-scale preparation of benzothiazole and benzoxazole also proceeded smoothly under the mild conditions. Moreover, a plausible reaction mechanism was discussed, with (o-CF3PhO)3P and its hydrolysis product (o-CF3PhO)2P(O)H contributing to the formation of the target products as an amide synthesis coupling agent and a cyclization reaction promoter, respectively.
Collapse
Affiliation(s)
- Mei Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Xuan Zhou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yunhuan Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Yu Tian
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Wenchang Gou
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Lin Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| | - Chun Li
- School of Pharmaceutical Sciences, Guizhou Medical University, 550004 Guiyang, People's Republic of China
| |
Collapse
|
2
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
3
|
Pu L. Regioselective Substitution of BINOL. Chem Rev 2024; 124:6643-6689. [PMID: 38723152 PMCID: PMC11117191 DOI: 10.1021/acs.chemrev.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
1,1'-Bi-2-naphthol (BINOL) has been extensively used as the chirality source in the fields of molecular recognition, asymmetric synthesis, and materials science. The direct electrophilic substitution at the aromatic rings of the optically active BINOL has been developed as one of the most convenient strategies to structurally modify BINOL for diverse applications. High regioselectivity has been achieved for the reaction of BINOL with electrophiles. Depending upon the reaction conditions and substitution patterns, various functional groups can be introduced to the specific positions, such as the 6-, 5-, 4-, and 3-positions, of BINOL. Ortho-lithiation at the 3-position directed by the functional groups at the 2-position of BINOL have been extensively used to prepare the 3- and 3,3'-substituted BINOLs. The use of transition metal-catalyzed C-H activation has also been explored to functionalize BINOL at the 3-, 4-, 5-, 6-, and 7-positions. These regioselective substitutions of BINOL have allowed the construction of tremendous amount of BINOL derivatives with fascinating structures and properties as reviewed in this article. Examples for the applications of the optically active BINOLs with varying substitutions in asymmetric catalysis, molecular recognition, chiral sensing and materials are also provided.
Collapse
Affiliation(s)
- Lin Pu
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
4
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
5
|
Bhattacharyya A, Sk MR, Sen S, Kundu S, Maji MS. Annulative π-Extension by Cp*Co(III)-Catalyzed Ketone-Directed peri-Annulation: An Approach to Access Fused Arenes. Org Lett 2023. [PMID: 38032281 DOI: 10.1021/acs.orglett.3c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
A masked-bay-region selective first-row transition-metal Cp*Co(III)-catalyzed annulative π-extension of arene-derived ketones is achieved to afford K-region-functionalized benzo[e]pyrenes, benzotetraphenes, and pyrenes. Comprehensive density functional theory studies buttress the mechanistic pathway comprising key steps like peri-C-H activation, alkyne 1,2-migratory insertion, and nucleophilic attack toward ketone, this attack being the rate-determining step. In addition, π-conjugated 1,1'-bipyrenes, potential photocatalyst pyrene-quinones, and putative n-type semiconductor cyano group-containing dibenzo[de,qr]tetracenes are also accessed.
Collapse
Affiliation(s)
- Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Md Raja Sk
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Supreeta Sen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Rao WH, Li YG, Jiang LL, Li Q, Zou GD, Cao X. Metal-Free Selective Ortho-C-H Amidation of Hypervalent(III) Iodobezenes with N-Methoxy Amides under Mild Conditions. J Org Chem 2023; 88:13825-13837. [PMID: 37737590 DOI: 10.1021/acs.joc.3c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A metal-free selective ortho-C-H amidation of aryl iodines(III) with the use of N-methoxy amides as aminating reagents under mild conditions is described here. In the protocol, excellent chemoselectivity and high regioselectivity were obtained. Notably, the iodine substituent rendered the amidation product suitable to be used for further elaboration.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Ying-Ge Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qi Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
7
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
He Y, Sun B, Lu X, Zhou Y, Zhang FL. Iridium-Catalyzed Direct Ortho-C-H Amidation of α-Ketoesters with Sulfonyl Azides Using a Transient Directing Group Strategy. J Org Chem 2023; 88:4345-4351. [PMID: 36898142 DOI: 10.1021/acs.joc.2c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Direct C-H amidation of α-ketoesters was accomplished using various organic azides as the amino source through the combination of transient directing group strategy and iridium catalysis. Excellent functional group tolerance and wide substrate scope were explored under simple and mild conditions. Importantly, it was found that the steric hindrance of the ester moiety played a pivotal role for the reaction efficacy. In addition, the reaction could be enlarged to gram scale, and several useful heterocycles were readily constructed via one-step late-stage derivatization.
Collapse
Affiliation(s)
- Yinlong He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xuelian Lu
- Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.,Shenzhen Research Institute, Wuhan University of Technology, Shenzhen, Guangdong 518057, China
| |
Collapse
|
9
|
Gao Q, Xu S. Site- and Stereoselective C(sp 3 )-H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218025. [PMID: 36581587 DOI: 10.1002/anie.202218025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Transition metal-catalyzed site- and stereoselective C-H activation of strained (hetero)cycloalkanes remains a formidable challenge. We herein report a carbamate-directed iridium-catalyzed asymmetric β-C(sp3 )-H borylation of cyclopropanol derivatives. A variety of densely functionalized cyclopropanols were obtained in good enantioselectivities via desymmetrization and kinetic resolution. In addition, site-selective C(sp3 )-H borylation of methine groups furnished α-borylated (hetero)cycloalkanols in moderate to good yields. The synthetic utility of the method was further shown in a gram-scale synthesis and diverse downstream transformations of borylated products.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Regioselective Pd-catalyzed decarboxylative C-6 acylation of 7-O-carbamate coumarins and their anti-inflammatory evaluation. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Wang J, Lin Z, Zheng Z, Xiao R, Zheng K. Theoretical Study on Ir-Catalyzed α-Amidation of 2-Acylimidazoles: Mechanism and Insertion Selectivity. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Juping Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zijie Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zhenjie Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Rongxing Xiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Kangcheng Zheng
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
12
|
Dong X, Shang M, Chen S, Zhang T, Jalani HB, Lu H. Carbonyl-Assisted Iridium-Catalyzed C-H Amination Using 2,2,2-Trichloroethoxycarbonyl Azide. J Org Chem 2022; 87:13990-14004. [PMID: 36190135 DOI: 10.1021/acs.joc.2c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carbonyl-directed, mono C-H amination of arenes has been achieved using [Cp*Ir(III)Cl2]2 as the catalyst and 2,2,2-trichloroethoxycarbonyl (Troc) azide as an aminating reagent. The amination proceeds smoothly with a variety of arylcarbonyl compounds, including alkyl and vinyl arylketones, secondary and tertiary aryl amides, and acetyl indoles. The resulting ortho-TrocNH arylcarbonyl compounds are easily transformed to the corresponding free arylamines, aryl carbamates, or aryl ureas. Taking advantage of the electrophilic nature of both Troc and carbonyl groups in ortho-TrocNH arylcarbonyl compounds, the subsequent cyclization with dinucleophilic reagents has also been demonstrated. This provides an efficient strategy for the construction of aryl-fused N-heterocycles.
Collapse
Affiliation(s)
- Xunqing Dong
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Mingzhou Shang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Tao Zhang
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Hitesh B Jalani
- Smart BioPharm, 310-Pilotplant, Incheon Techno-Park, 12-Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
13
|
Das B, Dahiya A, Sahoo AK, Patel BK. Transformable Transient Directing Group-Assisted C(sp 2)–H Activation: Synthesis and Late-Stage Functionalizations of o-Alkenylanilines. J Org Chem 2022; 87:13383-13388. [DOI: 10.1021/acs.joc.2c01626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
14
|
Wu D, Liu Z, Chang Y, Chen J, Qi H, Dong Y, Xu H. Cp*Co III-catalyzed formal [4 + 2] cycloaddition of 2-phenyl-1 H-imidazoles to afford imidazo[1,2- c]quinazoline derivatives. Org Biomol Chem 2022; 20:4993-4998. [PMID: 35694953 DOI: 10.1039/d2ob00697a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic protocol based on Cp*CoIII-catalyzed C-H amidation/annulation of 2-aryl-1H-imidazoles with 1,4,2-dioxazol-5-ones was developed to give imidazo[1,2-c]quinazoline derivatives with broad substrate scope in moderate to good yields. The method has good prospects of application in the synthesis of imidazo[1,2-c]quinazoline drugs.
Collapse
Affiliation(s)
- Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhengqiang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yiting Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiajing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medcial University, Guiyang 550014, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China. .,Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Mandal R, Garai B, Sundararaju B. Weak-Coordination in C–H Bond Functionalizations Catalyzed by 3d Metals. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05267] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rajib Mandal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
16
|
Xie H, Song JL, Jiang CY, Huang YX, Zeng JY, Liu XG, Zhang SS, Yang F. Thioether-directed Rh(III)-catalyzed peri-selective acyloxylation of arenes. Org Biomol Chem 2022; 20:565-569. [PMID: 34985096 DOI: 10.1039/d1ob02236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A thioether directed acyloxylation of arenes has been realized via Cp*Rh(III)-catalyzed C-H activation and subsequent coupling with carboxylic acids. This new method showed high functional group compatibility and broad substrate scope. Primary mechanistic studies have been conducted and a tentative reaction mechanism was proposed. It represents the first example of a thioether-directed Cp*Rh(III)-catalyzed C(sp2)-H acyloxylation reaction.
Collapse
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Chun-Yong Jiang
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, P. R. China
| | - Yan-Xia Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Jun-Yi Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xu-Ge Liu
- Key Laboratory of Brain Targeted Nanodrugs of Henan Province, School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Fan Yang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
17
|
Saha S, Maji MS. Cp*Co(III)-catalyzed thiocarbamate directed C−H aminocarbonyl-ation, amination, and cascade annulation of pyrroles. Chem Commun (Camb) 2022; 58:10865-10868. [DOI: 10.1039/d2cc03992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt(III)-catalyzed thiocarbamate directed aminocarbonylation and amination of C−H bond are described to access diverse amides. Biologically relevant pyrrolo[1,2-c]imidazoles were readily accessed via one-pot intramolecular cyclization at thiocarbamoyl directing group. Notably,...
Collapse
|
18
|
Ramachandran K, Anbarasan P. Cp*Co III-catalyzed C2-alkylation of indole derivatives with substituted cyclopropanols. Chem Commun (Camb) 2022; 58:10536-10539. [DOI: 10.1039/d2cc03719j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and efficient Cp*CoIII-catalyzed C2-alkylation of N-pyridylindoles has been achieved utilizing cyclopropanols as an alkylating reagent.
Collapse
Affiliation(s)
- Kuppan Ramachandran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India
| |
Collapse
|
19
|
Liu H, Chi W, Lin ML, Dong L. Iridium( iii)-catalyzed two-fold C–H alkylation of BINOLs with allyl alcohols. Org Chem Front 2022. [DOI: 10.1039/d1qo01486b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ir(iii)-Catalyzed C–H alkylation of BINOL units has been well examined by using allyl alcohols as coupling partners.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Chi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
|
21
|
Laru S, Bhattacharjee S, Ghosh S, Hajra A. One-Pot Construction of Indolo[2,3- b]quinoxalines through Ruthenium-Catalyzed Ortho C-H Bond Functionalization of 2-Arylquinoxalines with Sulfonyl Azides. Org Lett 2021; 23:7624-7629. [PMID: 34543023 DOI: 10.1021/acs.orglett.1c02837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of N-substituted indolo[2,3-b]quinoxalines has been developed through a Ru(II)-catalyzed ortho C-H functionalization of 2-arylquinoxalines with sulfonyl azides and further oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in one pot. This double C-N bond formation strategy provides a new efficient route for the preparation of a series of biologically relevant 6H-indolo[2,3-b]quinoxaline derivatives in up to 94% yield, suggesting a broad substrate scope applicability. The preliminary mechanistic studies reveal that the sequential C-N bond formations proceed through the formation of a five-membered ruthenacyclic intermediate in the first step and a radical mechanism in the second step.
Collapse
Affiliation(s)
- Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
22
|
Faarasse S, El Brahmi N, Guillaumet G, El Kazzouli S. Regioselective C-H Functionalization of the Six-Membered Ring of the 6,5-Fused Heterocyclic Systems: An Overview. Molecules 2021; 26:5763. [PMID: 34641306 PMCID: PMC8510187 DOI: 10.3390/molecules26195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The regioselective C-H functionalization of the five-membered ring of the 6,5-fused heterocyclic systems is nowadays well documented due to its high reactivity compared to the six-membered ring. So, developing new procedures of C-H functionalization of the six-membered ring "by thinking out of the box" is extremely challenging, which explains the limited number of reports published to date. This review paper aims to highlight advances achieved in this emerging chemistry research and discusses recently reported methods.
Collapse
Affiliation(s)
- Soukaina Faarasse
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| | - Gérald Guillaumet
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
- Institute of Organic and Analytical Chemistry, University of Orleans, UMR CNRS 7311, BP 6759, CEDEX 2, 45067 Orleans, France
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, Euromed University of Fes, Route de Meknes, Fez 30000, Morocco; (S.F.); (N.E.B.); (G.G.)
| |
Collapse
|
23
|
Basuli S, Sahu S, Saha S, Maji MS. Cp*Co(III)‐Catalyzed Dehydrative C2‐Prenylation of Pyrrole and Indole with Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Samrat Sahu
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Shuvendu Saha
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
24
|
Sunny S, Karvembu R. Recent Advances in Cobalt‐Catalyzed, Directing‐Group‐Assisted C−H Bond Amidation Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sereena Sunny
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| | - Ramasamy Karvembu
- Department of Chemistry National Institute of Technology Tiruchirappalli 620015 India
| |
Collapse
|
25
|
Wu Z, Jiang H, Zhang Y. Pd-catalyzed cross-electrophile Coupling/C-H alkylation reaction enabled by a mediator generated via C(sp 3)-H activation. Chem Sci 2021; 12:8531-8536. [PMID: 34221334 PMCID: PMC8221197 DOI: 10.1039/d1sc01731d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transition-metal-catalyzed cross-electrophile C(sp2)–(sp3) coupling and C–H alkylation reactions represent two efficient methods for the incorporation of an alkyl group into aromatic rings. Herein, we report a Pd-catalyzed cascade cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides. Methoxy and benzyloxy groups, which are ubiquitous functional groups and common protecting groups, were utilized as crucial mediators via primary or secondary C(sp3)–H activation. The reaction provides an innovative and convenient access for the synthesis of alkylated phenol derivatives, which are widely found in bioactive compounds and organic functional materials. A cascade Pd-catalyzed cross-electrophile coupling and C–H alkylation reaction of 2-iodo-alkoxylarenes with alkyl chlorides has been developed by using an ortho-methoxy or benzyloxy group as a mediator via C(sp3)–H activation.![]()
Collapse
Affiliation(s)
- Zhuo Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Hang Jiang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University 1239 Siping Road Shanghai 200092 China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University 1239 Siping Road Shanghai 200092 China
| |
Collapse
|
26
|
Banjare SK, Nanda T, Pati BV, Biswal P, Ravikumar PC. O-Directed C-H functionalization via cobaltacycles: a sustainable approach for C-C and C-heteroatom bond formations. Chem Commun (Camb) 2021; 57:3630-3647. [PMID: 33870349 DOI: 10.1039/d0cc08199j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on providing comprehensive highlights of the recent advances in the field of cobalt-catalysed C-H functionalization and related synthetic concepts, relying on these through oxygen atom coordination. In recent years, 3d transition metal (Fe, Co, Cu & Ni) catalysed C-H functionalization reactions have received immense attention on account of its higher abundance and low cost, as compared to noble metals such as Ir, Rh, Ru and Pd. Among the first-row transition metals, cobalt is one of the extensively used metals for sustainable synthesis due to its unique reactivity towards the functionalization of inert C-H bonds. The functionalization of the inert C-H bond necessitates a proximal directing group. In this context, strongly coordinating nitrogen atom directed C-H functionalizations have been well explored. Nevertheless, strongly coordinating nitrogen-containing scaffolds, such as pyridine, pyrimidine, and 8-aminoquinoline, have to be installed and removed in a separate process. In contrast, C-H functionalizations through weakly coordinating atoms, such as oxygen, are largely underdeveloped. Since the oxygen atom is a part of many readily available functional groups, such as aldehydes, ketones, carboxylic acids, and esters, it could be used as directing groups for selective C-H functionalization reactions without any modification. Thus, the use of 3d transition metals, such as cobalt, along with weakly coordinating (oxygen) directing groups for C-H functionalization reactions are more sustainable, especially for the large-scale production of pharmaceuticals in industries. During the last decade, notable progress has been made using this concept. Nonetheless, almost all the reports are restricted to the formation of C-C and C-N bond. Therefore, there is a wide scope for developing this area for the formation of other bonds, such as C-X (halogens), C-B, C-S, and C-Se.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) HBNI, Bhubaneswar, Odisha 752050, India.
| | | | | | | | | |
Collapse
|
27
|
Liang Y, Si X, Zhang H, Yang D, Niu J, Song M. Thiocarbamate‐directed Cp*Co(III)‐Catalyzed Olefinic C−H Amidation: Facile Access to Enamines with High (
Z
)‐Selectivity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Ru Liang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Xiao‐Ju Si
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - He Zhang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Dandan Yang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Jun‐Long Niu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Mao‐Ping Song
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
28
|
Xie H, Zhong M, Wang XT, Wu JQ, Cai YQ, Liu J, Shu B, Che T, Zhang SS. Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed C(sp2)–H amination of arenes using thioethers as directing groups. Org Chem Front 2021. [DOI: 10.1039/d0qo01353f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A mild and selective Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed direct C(sp2)–H amination of arenes and three types of nitrene precursor reagents is reported, with the assistance of a thioether directing group.
Collapse
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Mei Zhong
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Xiao-Tong Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences
- Wuyi University
- Jiangmen 529020
- China
| | - Yan-Qu Cai
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- People's Republic of China
| | - Bing Shu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- PR China
| | - Tong Che
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
- Jiangxi Chinese Medicine Science Center of DICP
| | - Shang-Shi Zhang
- Center for Drug Research and Development
- Guangdong Pharmaceutical University
- Guangzhou
- China
| |
Collapse
|
29
|
Zhang Y, Lin Z, Ackermann L. Electrochemical C-H Amidation of Heteroarenes with N-Alkyl Sulfonamides in Aqueous Medium. Chemistry 2020; 27:242-246. [PMID: 33085807 PMCID: PMC7898600 DOI: 10.1002/chem.202004229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Indexed: 12/12/2022]
Abstract
The construction of C-N bonds by free radical reactions represents a powerful synthetic approach for direct C-H amidations of arenes or heteroarenes. Developing efficient and more environmentally friendly synthetic methods for C-H amidation reactions remains highly desirable. Herein, metal-free electrochemical oxidative dehydrogenative C-H amidations of heteroarenes with N-alkylsulfonamides have been accomplished. The catalyst- and chemical-oxidant-free C-H amidation features an ample scope and employs electricity as the green and sole oxidant. A variety of heteroarenes, including indoles, pyrroles, benzofuran and benzothiophene, thereby underwent this C(sp2 )-H nitrogenation. Cyclic voltammetry studies and control experiments provided evidence for nitrogen-centered radicals being directly generated under metal-free electrocatalysis.
Collapse
Affiliation(s)
- Yan Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany.,Key Laboratory of the Ministry of Education for Advanced, Catalysis Materials, Zhejiang Normal University, Yingbin Road 688, 321004, Jinhua, P. R. China
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
30
|
Sk MR, Bera SS, Basuli S, Metya A, Maji MS. Recent Progress in the C−N Bond Formation via High‐Valent Group 9 Cp*M(III)‐Catalyzed Directed sp
2
C−H Activation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Raja Sk
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Sourav Sekhar Bera
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Abhisek Metya
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| |
Collapse
|
31
|
Carral-Menoyo A, Sotomayor N, Lete E. Amide-Directed Intramolecular Co(III)-Catalyzed C–H Hydroarylation of Alkenes for the Synthesis of Dihydrobenzofurans with a Quaternary Center. J Org Chem 2020; 85:10261-10270. [DOI: 10.1021/acs.joc.0c01413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Asier Carral-Menoyo
- Departamento de Quı́mica Orgánica II, Facultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
| | - Nuria Sotomayor
- Departamento de Quı́mica Orgánica II, Facultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
| | - Esther Lete
- Departamento de Quı́mica Orgánica II, Facultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco/Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080 Bilbao, Spain
| |
Collapse
|
32
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
33
|
Liu H, Luo Y, Zhang J, Liu M, Dong L. Rapid Synthesis of Alkenylated BINOL Derivatives via Rh(III)-Catalyzed C-H Bond Activation. Org Lett 2020; 22:4648-4652. [PMID: 32496793 DOI: 10.1021/acs.orglett.0c01415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of BINOL units has been well examined via Rh-catalyzed C-H activation and functionalization reactions by using ester carbonyls as directing groups and alkenes as coupling partners. The one-pot strategy was an efficient protocol for the rapid synthesis of BINOL derivatives with retention of optical purity.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|