1
|
Gao YL, Yang Y, Wu C, Xie MS, Guo HM. Chemoselectivity Switch between Enantioselective [2,3]-Wittig Rearrangement and Conia-Ene-Type Reactions of Propargyloxyoxindoles. Chemistry 2024; 30:e202402556. [PMID: 39051982 DOI: 10.1002/chem.202402556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite the existence of three competing reactions for propargyloxyoxindoles, we report a chemoselectivity switch between enantioselective propargyl [2,3]-Wittig rearrangement and Conia-ene-type reactions, with suppression of the [1,2]-Wittig-type rearrangement. Using C1-symmetric imidazolidine-pyrroloimidazolone pyridine as the ligand and Ni(acac)2 as the Lewis acid, diverse 3-hydroxy 3-substituted oxindoles containing allenyl groups were obtained in up to 98 % yield and 99 % ee via asymmetric propargyl [2,3]-Wittig rearrangement. In the presence of AgOTf-Duanphos, chiral spiro dihydrofuran oxindoles were given in up to 98 % yield and 91 % ee through a Conia-ene-type reaction.
Collapse
Affiliation(s)
- Yu-Lin Gao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Chen Wu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Zhang Y, Wu J, Ning L, Chen Q, Feng X, Liu X. Enantioselective synthesis of tetrasubstituted allenes via addition/arylation tandem reaction of 2-activated 1,3-enynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem Sci 2022; 13:12290-12308. [PMID: 36382273 PMCID: PMC9629009 DOI: 10.1039/d2sc03806d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 09/22/2023] Open
Abstract
Asymmetric sigmatropic rearrangement is a powerful organic transformation via substrate-reorganization to efficiently increase molecular complexity from readily accessible starting materials. In particular, a high level of diastereo- and enantioselectivity can be readily accessed through well-defined and predictable transition states in [3,3], [2,3]-sigmatropic rearrangements, which have been widely applied in the synthesis of various chiral building blocks, natural products, and pharmaceuticals. In recent years, catalytic asymmetric sigmatropic rearrangements involving chiral metal complexes to induce stereocontrol have been intensively studied. This review presents an overview of metal-catalysed enantioselective versions of sigmatropic rearrangements in the past two decades, mainly focusing on [3,3], [2,3], and [1,3]-rearrangements, to show the development of substrate design, new catalyst exploitation, and novel cascade processes. In addition, their application in the asymmetric synthesis of complex natural products is also exemplified.
Collapse
Affiliation(s)
- Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
4
|
Loui HJ, Schneider C. Cooperative Palladium/Brønsted Acid Catalysis toward the Highly Enantioselective Allenylation of β-Keto Esters. Org Lett 2022; 24:1496-1501. [PMID: 35171616 DOI: 10.1021/acs.orglett.2c00179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report the first enantioselective allenylation of Pd enolates enabled by cooperative Pd/Brønsted acid catalysis employing β-keto esters and propargyl alcohols. The enantioselectivity originates solely from an in-situ-generated chiral metal enolate in an open transition state with no additional binding of the propargyl component to the catalyst. Thus a broad substrate scope was established, furnishing hitherto inaccessible products in very good yields with excellent enantioselectivities (up to >99:1 e.r.).
Collapse
Affiliation(s)
- Henning J Loui
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
5
|
Xiao W, Wu J. Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent advances in the metal-catalyzed asymmetric synthesis of chiral allenes are summarized. This review is categorized based on the starting material, including alkynes, racemic allenes, and conjugated dienes.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Crescentini LD, Favi G, Mari G, Ciancaleoni G, Costamagna M, Santeusanio S, Mantellini F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules 2021; 26:6557. [PMID: 34770965 PMCID: PMC8587800 DOI: 10.3390/molecules26216557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Here we report the synthesis of interesting 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones and 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones, starting from 1,2-diaza-1,3-dienes (DDs) and propargyl alcohol. The reaction proceeds through a sequence Michael-type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement. In the same way, the reaction between the aforementioned DDs and allyl alcohol furnished 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones. A DFT study was also carried out, in order to have decisive clarifications about the mechanism.
Collapse
Affiliation(s)
- Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Marcello Costamagna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| |
Collapse
|