1
|
Wang X, Feng S, Han J, Hu Y, Ye S, Wu J. Substrate-Controlled Electrochemical Reaction of 2-Alkynylbenzamides, Inorganic Sulfites, and Alcohols. J Org Chem 2024; 89:16873-16882. [PMID: 39504407 DOI: 10.1021/acs.joc.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Isoindolones constitute a dominant structural class in synthetic and medicinal chemistry. In this research, an electrochemical reaction involving 2-alkynylbenzamides, inorganic sulfites, and alcohols was first established to provide sulfonyl ester-substituted 3-hydroxyisoindolinone derivatives in moderate to good yields with excellent functional group tolerance. When bulky aryl-substituted 2-alkynylbenzamides are utilized as substrates, sulfonyl ester-substituted 3-alkylideneisoindolinones can be selectively generated with good chemoselectivity. Alkoxysulfonyl radicals derived from the anodic oxidation of inorganic sulfite with alcohols are involved in this transformation.
Collapse
Affiliation(s)
- Xiaoman Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Sijia Feng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jiarui Han
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Teng MY, Wu YJ, Chen JH, Huang FR, Liu DY, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Carbonylation towards Chiral Isoindolinones. Angew Chem Int Ed Engl 2024; 63:e202318803. [PMID: 38205884 DOI: 10.1002/anie.202318803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
3
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
4
|
Gómez-Prado RA, Silva AL, Miranda LD. Synthesis of nuevamine and a cyano-chilenine analog via divergent C(sp 3)-H bond functionalization of isoindolinone derivatives. Org Biomol Chem 2022; 20:7325-7331. [PMID: 36069857 DOI: 10.1039/d2ob01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Divergent C(sp3)-H bond functionalizations of isoindolinone derivatives were developed to synthesize nuevamine, a cyano-chilenine derivative, and two related analogs. A copper-catalyzed C-H cross-dehydrogenative coupling (via cation formation) allowed the formation of a new C-C bond leading to the direct assembly of the isoindolo[1,2-a]isoquinolinone tetracyclic system of the nuevamine. The syntheses of the cyano-chilenine derivatives were carried out by installing two nitrile groups under basic conditions (via anion formation). Then, the isoindolobenzazepinic system of the chilenine skeleton was constructed by a Houben-Hoesch cyclization process. The present methodology has the advantage of not requiring the use of pre-functionalized substrates.
Collapse
Affiliation(s)
- Raúl A Gómez-Prado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| | - Ana L Silva
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| | - Luis D Miranda
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, México D.F. 04510, Mexico.
| |
Collapse
|
5
|
Shi Z, Li N, Wang WZ, Lu HK, Yuan Y, Li Z, Ye KY. Electrochemical 5- exo-dig aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Org Biomol Chem 2022; 20:4320-4323. [PMID: 35593414 DOI: 10.1039/d2ob00637e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of biologically relevant 3-hydroxyisoindolinones from readily available 2-alkynylbenzamides is an appealing synthetic approach. However, such kinds of compounds preferably undergo O-attacked 5-exo-dig/6-endo-dig cyclizations. Herein, we report an electrochemically generated amidyl radical proceeding via a highly selective N-attacked 5-exo-dig radical cyclization to form 3-hydroxyisoindolinone derivatives. This reaction features simple operation, good selectivity, and broad substrate scope. Moreover, gram-scale preparation and synthetic elaborations imply the potential applicability of this protocol for the synthesis of diverse isoindolinone derivatives.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
7
|
Lukasevics L, Cizikovs A, Grigorjeva L. C-H bond functionalization by high-valent cobalt catalysis: current progress, challenges and future perspectives. Chem Commun (Camb) 2021; 57:10827-10841. [PMID: 34570134 DOI: 10.1039/d1cc04382j] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the last decade, high-valent cobalt catalysis has earned a place in the spotlight as a valuable tool for C-H activation and functionalization. Since the discovery of its unique reactivity, more and more attention has been directed towards the utilization of cobalt as an alternative to noble metal catalysts. In particular, Cp*Co(III) complexes, as well as simple Co(II) and Co(III) salts in combination with bidentate chelation assistance, have been extensively used for the development of novel transformations. In this review, we have demonstrated the existing trends in the C-H functionalization methodology using high-valent cobalt catalysis and highlighted the main challenges to overcome, as well as perspective directions, which need to be further developed in the future.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia.
| |
Collapse
|
8
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 498] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
9
|
Liu J, Yang Z, Jiang J, Zeng Q, Zheng L, Liu ZQ. Rhodium(III)-Catalyzed Oxidative Cyclization of Oxazolines with Cyclopropanols: Synthesis of Isoindolinones. Org Lett 2021; 23:5927-5931. [PMID: 34236196 DOI: 10.1021/acs.orglett.1c02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The synthesis of C3-substituted isoindolin-1-ones from oxazolines and cyclopropanols has been achieved with oxazoline as a bifunctional nucleophilic directing group. The reaction proceeds by the cleavage of three chemical bonds and allows the formation of three new chemical bonds, a C-N bond, a C-C bond, and a C-O bond, in a single step.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Lai H, Xu J, Lin J, Zha D. Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Org Biomol Chem 2021; 19:7621-7626. [PMID: 34308463 DOI: 10.1039/d1ob01054a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinones are ubiquitous structural motifs in natural products and pharmaceuticals. Establishing an efficient method for structural modification of isoindolinones could significantly facilitate new drug development. Herein, we describe copper-promoted direct amidation of isoindolinone scaffolds mediated by sodium persulfate. The method exhibits mild reaction conditions and high site-selectivity, and enables the structural modification of the drug indobufen ester with various amides with yields of 49 to 98%. It is also gram-scalable. Additionally, the reaction mechanism appears to involve a radical and a carbocationic pathway.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China. and Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
11
|
Cizikovs A, Lukasevics L, Grigorjeva L. Cobalt-catalyzed C–H bond functionalization using traceless directing group. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Abstract
Sustainable transformations towards the production of valuable chemicals constantly attract interest, both in terms of academic and applied research. C–H activation has long been scrutinized in this regard, given that it offers a straightforward pathway to prepare compounds of great significance. In this context, directing groups (DG) have paved the way for chemical transformations that had not been achievable using traditional reactions. Few steps, high yields, selectivity and activation of inert substrates are some of the invaluable assets of directed catalysis. Additionally, the employment of traceless directing groups (TDG) greatly improves and simplifies this strategy, enabling the realization of multi-step reactions in one-pot, cascade procedures. Cheap, abundant, readily available transition metal salts and complexes can catalyze a plethora of reactions employing TDGs, usually under low catalyst loadings—rarely under stoichiometric amounts, leading in greater atom economy and milder conditions with increased yields and step-economy. This review article summarizes all the work done on TDG-assisted catalysis with manganese, iron, cobalt, nickel, or copper catalysts, and discusses the structure-activity relationships observed, by presenting the catalytic pathways and range of transformations reported thus far.
Collapse
|
13
|
Lin Z, Jin Y, Hu W, Wang C. Nickel-catalyzed asymmetric reductive aryl-allylation of unactivated alkenes. Chem Sci 2021; 12:6712-6718. [PMID: 34040746 PMCID: PMC8133004 DOI: 10.1039/d1sc01115d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Herein we report a nickel-catalyzed asymmetric reductive aryl-allylation of aryl iodide-tethered unactivated alkenes, wherein both acyclic allyl carbonates and cyclic vinyl ethylene carbonates can serve as the coupling partners. Furthermore, the direct use of allylic alcohols as the electrophilic allyl source in this reaction is also viable in the presence of BOC anhydride. Remarkably, this reaction proceeds with high linear/branched-, E/Z- and enantio-selectivity, allowing the synthesis of various chiral indanes and dihydrobenzofurans (50 examples) containing a homoallyl-substituted quaternary stereocenter with high optical purity (90-98% ee). In this reductive reaction, the use of pregenerated organometallics can be circumvented, giving this process good functionality tolerance and high step-economy.
Collapse
Affiliation(s)
- Zhiyang Lin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Weitao Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 20237 P. R. China
| |
Collapse
|
14
|
Lukasevics L, Cizikovs A, Grigorjeva L. Cobalt-Catalyzed C(sp 2)-H Carbonylation of Amino Acids Using Picolinamide as a Traceless Directing Group. Org Lett 2021; 23:2748-2753. [PMID: 33724856 DOI: 10.1021/acs.orglett.1c00660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report an efficient protocol for the C(sp2)-H carbonylation of amino acid derivatives based on an inexpensive cobalt(II) salt catalyst. Carbonylation was accomplished using picolinamide as a traceless directing group, CO (1 atm) as the carbonyl source, and Co(dpm)2 as the catalyst. A broad range of phenylalanine derivatives bearing diverse functional groups were tolerated. Moreover, the method can be successfully applied for the C(sp2)-H carbonylation of short peptides thereby allowing access for peptide late-stage carbonylation.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles Street 21, Riga LV-1006, Latvia
| |
Collapse
|
15
|
Zhang L, Wang Z, Sun S, Ni S, Wen L, Li M. Metal‐Free
Catalyzed Cyclization of
N
‐Methoxybenzamides
to Construct Quaternary
Carbon‐Containing
Isoindolinones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin‐Bao Zhang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Zi‐Chen Wang
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Sheng‐Zheng Sun
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Shao‐Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou Guangdong 515063 China
| | - Li‐Rong Wen
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| | - Ming Li
- State Key Laboratory Base of Eco‐Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao Shandong 266042 China
| |
Collapse
|
16
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
17
|
Borja-Miranda A, Valencia-Villegas F, Lujan-Montelongo JA, Polindara-García LA. Synthesis of Polysubstituted Isoindolinones via Radical Cyclization of 1,3-Dicarbonyl Ugi-4CR Adducts Using Tetrabutylammonium Persulfate and TEMPO. J Org Chem 2021; 86:929-946. [PMID: 33291875 DOI: 10.1021/acs.joc.0c02441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of an efficient method for the synthesis of polysubstituted isoindolinones from 1,3-dicarbonyl Ugi-4CR adducts, employing an aromatic radical cyclization process promoted by tetrabutylammonium persulfate and 2,2,6,6-tetramethyl-1-piperidine 1-oxyl (TEMPO), is described. The protocol allowed the construction of a library of isoindolinones bearing a congested carbon in good to excellent yields under mild conditions and in short reaction times.
Collapse
Affiliation(s)
- Andrés Borja-Miranda
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | - Fabiola Valencia-Villegas
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| | | | - Luis A Polindara-García
- Department of Organic Chemistry, Institute of Chemistry, National Autonomous University of Mexico, Mexico City C.P. 04510, Mexico
| |
Collapse
|
18
|
Nguyen TT, Ngo BHT, Le HX, Vu LNP, To TA, Phan ANQ, Phan NTS. Cobalt-catalyzed annulation of styrenes with α-bromoacetic acids. RSC Adv 2021; 11:5451-5455. [PMID: 35423092 PMCID: PMC8694682 DOI: 10.1039/d0ra09588e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/23/2021] [Indexed: 11/21/2022] Open
Abstract
We report a method for addition of α-bromophenylacetic acids to vinyl C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds in styrenes to afford γ-lactones. Reactions employed a simple cobalt catalyst Co(NO3)2·6H2O in the presence of dipivaloylmethane (dpm) ligand. Many functionalities including halogen, ester, and nitro groups were compatible with reaction conditions. If α-bromoesters were used, vinylacetates were the major products. Cobalt-catalyzed addition of α-bromoacetic acids/acetates to CC bonds in styrenes is reported for the first time. Good tolerance of functional groups was observed.![]()
Collapse
Affiliation(s)
- Tung T. Nguyen
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Bao H. T. Ngo
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Huy X. Le
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Linh N. P. Vu
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Tuong A. To
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Anh N. Q. Phan
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| | - Nam T. S. Phan
- Faculty of Chemical Engineering
- Ho Chi Minh City University of Technology (HCMUT)
- Ho Chi Minh City
- Vietnam
- Vietnam National University Ho Chi Minh City
| |
Collapse
|
19
|
Singh P, Arulananda Babu S, Aggarwal Y, Patel P. Pd(II)‐catalyzed, Picolinamide‐aided sp
2
γ−C−H Functionalization of Phenylglycinol: Access to γ−C−H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prabhakar Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Yashika Aggarwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Pooja Patel
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
20
|
Lukasevics L, Grigorjeva L. Cobalt-catalyzed carbonylation of the C-H bond. Org Biomol Chem 2020; 18:7460-7466. [PMID: 32935722 DOI: 10.1039/d0ob01633k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Direct carbonylation of the C-H bond is a great tool for installing a carbonyl group in a wide variety of substrates. This review summarizes the C-H bond carbonylation methodologies using the cobalt-catalyzed C-H bond functionalization approach. Despite the fact that cobalt-catalyzed carbonylation methodologies have been known since Murahashi's report in 1955, this area is still underdeveloped, particularly carbonylation of the C(sp3)-H bond.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | | |
Collapse
|