1
|
Du Y, Wu H, Yang M, She Y, Yang YF. Nickel-catalyzed reductive arylalkylation of alkenes: 5- exo cyclization vs. 6- endo cyclization vs. 1,2-aryl migration to 6- endo product. Dalton Trans 2025; 54:5419-5424. [PMID: 40029100 DOI: 10.1039/d5dt00094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The detailed mechanisms of Ni-catalyzed reductive arylalkylation of unactivated alkenes with aryl bromides to synthesize benzene-fused 5-exo and 6-endo cyclic compounds were systematically investigated by DFT calculations. Our finding reveals that, under the catalysis of a Ni/biOx system with Zn as a reductant, bromobenzene containing a terminal olefin unit preferentially undergoes traditional Heck cyclization and cross-coupling reactions, favoring the formation of 5-exo cyclization products. In contrast, when Zn is absent, NiIII-alkyl species play a pivotal role, facilitating a rare 1,2-aryl migration followed by H-atom abstration, which selectively yields 6-endo cyclization products.
Collapse
Affiliation(s)
- Yuxin Du
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Hongli Wu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Miao Yang
- Chemical and Life Science Innovation Center, Department of Environment and Life Health, Anhui Vocational and Technical College, Hefei, Anhui 230011, China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Lakomy MG, Shankar M, Del Rio AC, Giri R. Ni-Catalyzed Linearizable Cyclization/Coupling with Detachable Silicon-Oxygen Linker: Access to 1,2-Oxasilolanes, 3-Hydroxysilanes and 4-Arylalkanols. Angew Chem Int Ed Engl 2024; 63:e202404679. [PMID: 38603546 DOI: 10.1002/anie.202404679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
We disclose a Ni-catalyzed cyclization/alkylmetal interception reaction in which products are readily linearized to permit regiodefined alkene dicarbofunctionalization. This method offers a convenient route to access 1,2-oxasilolane heterocycles, 3-hydroxysilanes and 4-arylalkanols with the formation of C(sp3)-C(sp3) bonds at primary and secondary alkyl carbon centers. In this reaction, a silicon-oxygen (Si-O) bond functions as a detachable linker that can be delinked with several hydride, alkyl, aryl and vinyl nucleophiles to create profusely functionalized 3-hydroxysilanes. A silicon motif in the cyclic C(sp3)-Si-O construct in 1,2-oxasilolane heterocycles can also be selectively deleted by Pd-catalyzed hydrodesilylation affording Si-ablated linear alcohol products reminiscent of vicinal ethylene dicarbofunctionalization with C(sp3) and C(sp2) carbon sources.
Collapse
Affiliation(s)
- Margaret G Lakomy
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Majji Shankar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Ava C Del Rio
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
4
|
Cabrera-Lobera N, Del Horno E, Quirós MT, Buñuel E, Gimeno M, Brennessel WW, Neidig ML, Priego JL, Cárdenas DJ. Ni(2,2':6',2''-terpyridine) 2: a high-spin octahedral formal Ni(0) complex. Dalton Trans 2024; 53:8550-8554. [PMID: 38715455 PMCID: PMC11106753 DOI: 10.1039/d3dt04247b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
We have synthesised and characterised the complex Ni(tpy)2 (tpy = 2,2':6',2''-terpyridine). This formally Ni(0) complex is paramagnetic both in the solid state and in solution (S = 2). The crystal structure shows an octahedral geometry, with molecules arranged in independent dimers involving π-stacking between pairs of complexes. Magnetic measurementes and DFT calculations suggest the existence of temperature-dependent intermolecular antiferromagnetic coupling in the solid state.
Collapse
Affiliation(s)
- Natalia Cabrera-Lobera
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Red ORFEO-CINQA, Av. Francisco Tomás y Valiente 7, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Estefanía Del Horno
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Red ORFEO-CINQA, Av. Francisco Tomás y Valiente 7, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - M Teresa Quirós
- Department of Organic Chemistry and Inorganic Chemistry, Facultad de Farmacia, Universidad de Alcalá de Henares, Campus Universitario, 28871, Madrid, Spain
| | - Elena Buñuel
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Red ORFEO-CINQA, Av. Francisco Tomás y Valiente 7, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Magali Gimeno
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - José Luis Priego
- Department of Inorganic Chemistry, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Diego J Cárdenas
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Red ORFEO-CINQA, Av. Francisco Tomás y Valiente 7, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Gao Y, Gao L, Zhu E, Yang Y, Jie M, Zhang J, Pan Z, Xia C. Nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes. Nat Commun 2023; 14:7917. [PMID: 38036527 PMCID: PMC10689762 DOI: 10.1038/s41467-023-43748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Alkene dicarbofunctionalization is an efficient strategy and operation-economic fashion for introducing complexity in molecules. A nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes for the simultaneous construction of one C(sp3)-C(sp3) bond and one C(sp3)-C(sp2) bond has been developed. The mild catalytic method provided valuable indanethylamine derivatives with wide substrate scope and good functional group compatibility. An enantioselective dicarbofunctionalization was also achieved with pyridine-oxazoline as a ligand. The efficiency of metallaphotoredox dicarbofunctionalization was demonstrated for the concise synthesis of pharmaceutically active compounds.
Collapse
Affiliation(s)
- Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Endiao Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Mi Jie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jiaqian Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
6
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
8
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
9
|
Rachii D, Caldwell DJ, Kosukegawa Y, Sexton M, Rablen PR, Malachowski WP. Ni-Catalyzed Enantioselective Intramolecular Mizoroki-Heck Reaction for the Synthesis of Phenanthridinone Derivatives. J Org Chem 2023. [PMID: 37321182 DOI: 10.1021/acs.joc.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A Ni-catalyzed enantioselective intramolecular Mizoroki-Heck reaction has been developed to transform symmetrical 1,4-cyclohexadienes with attached aryl halides into phenanthridinone analogues containing quaternary stereocenters. Herein, we report important advances in reaction optimization enabling control of unwanted proto-dehalogenation and alkene reduction side products. Moreover, this approach provides direct access to six-membered ring heterocyclic systems bearing all-carbon quaternary stereocenters, which have been much more challenging to form enantioselectively with nickel-catalyzed Heck reactions. A wide range of substrates were demonstrated to work in good to excellent yields. Good enantioselectivity was demonstrated using a new synthesized chiral iQuinox-type bidentate ligand (L27). The sustainability, low price of nickel catalysts, and significantly faster reaction rate (1 h) versus that of a recently reported palladium-catalyzed reaction (20 h) make this process an attractive alternative.
Collapse
Affiliation(s)
- Diana Rachii
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Dana J Caldwell
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Yui Kosukegawa
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Mary Sexton
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| | - Paul R Rablen
- Chemistry Department, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - William P Malachowski
- Chemistry Department, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
10
|
Sha X, Fang Y, Nie T, Qin S, Yang Y, Huang D, Ji F. Nickel-Catalyzed Reductive Dicarbofunctionalizations of Alkenes for the Synthesis of Difluorocarbonyl Oxindoles and Isoquinoline-1,3-diones. J Org Chem 2023; 88:4995-5006. [PMID: 36745403 DOI: 10.1021/acs.joc.2c02199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel and efficient strategy for the construction of difluorocarbonyl-oxindole and difluorocarbonyl-isoquinoline-1,3-dione derivatives involving nickel-catalyzed intramolecular Heck-type cyclizations followed by intermolecular cross-couplings has been developed. This approach features high functional group tolerance, broad substrate scope, and operational simplicity under mild conditions, thus providing a new method for the rapid difluorocarbonyl-functionalization of alkenes to construct the structurally diversified five- and six-membered heterocycles.
Collapse
Affiliation(s)
- Xuan Sha
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yini Fang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Tian Nie
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyu Qin
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Yang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Ji
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Chen Z, Shen Z. Nickel-catalyzed asymmetric reductive arylcyanation of alkenes with acetonitrile as the cyano source. Org Chem Front 2023. [DOI: 10.1039/d2qo01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chiral 3-cyanomethyl oxindoles were synthesized in high enantioselectivities and yields. The employment of acetonitrile as a cyano source via Zn(OTf)2-assisted β-carbon elimination is distinct from the common cyanation reaction modes.
Collapse
Affiliation(s)
- Zhenbang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
12
|
Ding D, Zhang L, Wen H, Wang C. Cobalt-Catalyzed Asymmetric Reductive Dicarbofunctionalization of 1,3-Dienes with o-Bromoaryl Imines as a Bis-Electrophile. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Decai Ding
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Linchuan Zhang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
Apolinar O, Kang T, Alturaifi TM, Bedekar PG, Rubel CZ, Derosa J, Sanchez BB, Wong QN, Sturgell EJ, Chen JS, Wisniewski SR, Liu P, Engle KM. Three-Component Asymmetric Ni-Catalyzed 1,2-Dicarbofunctionalization of Unactivated Alkenes via Stereoselective Migratory Insertion. J Am Chem Soc 2022; 144:19337-19343. [PMID: 36222701 DOI: 10.1021/jacs.2c06636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An asymmetric 1,2-dicarbofunctionalization of unactivated alkenes with aryl iodides and aryl/alkenylboronic esters under nickel/bioxazoline catalysis is disclosed. A wide array of aryl and alkenyl nucleophiles are tolerated, furnishing the products in good yield and with high enantioselectivity. In addition to terminal alkenes, 1,2-disubstituted internal alkenes participate in the reaction, establishing two contiguous stereocenters with high diastereoselectivity and moderate enantioselectivity. A combination of experimental and computational techniques shed light on the mechanism of the catalytic transformation, pointing to a closed-shell pathway with an enantiodetermining migratory insertion step, where stereoinduction arises from synergistic interactions between the sterically bulky achiral sulfonamide directing group and the hemilabile bidentate ligand.
Collapse
Affiliation(s)
- Omar Apolinar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Taeho Kang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Pranali G Bedekar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Joseph Derosa
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brittany B Sanchez
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Quynh Nguyen Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Emily J Sturgell
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Ni S, Vaillant FL, Mateos-Calbet A, Martin R, Cornella J. Ni-Catalyzed Oxygen Transfer from N 2O onto sp 3-Hybridized Carbons. J Am Chem Soc 2022; 144:18223-18228. [PMID: 36162124 PMCID: PMC9562464 DOI: 10.1021/jacs.2c06227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Herein we disclose a catalytic synthesis of cycloalkanols
that
harnesses the potential of N2O as an oxygen transfer agent
onto sp3-hybridized carbons. The protocol is distinguished
by its mild conditions and wide substrate scope, thus offering an
opportunity to access carbocyclic compounds from simple precursors
even in an enantioselective manner. Preliminary mechanistic studies
suggest that the oxygen insertion event occurs at an alkylnickel species
and that N2O is the O transfer reagent.
Collapse
Affiliation(s)
- Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Franck Le Vaillant
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ana Mateos-Calbet
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Ding Z, Kong W. Synthesis of Carbonyl-Containing Oxindoles via Ni-Catalyzed Reductive Aryl-Acylation and Aryl-Esterification of Alkenes. Molecules 2022; 27:5899. [PMID: 36144635 PMCID: PMC9503384 DOI: 10.3390/molecules27185899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Carbonyl-containing oxindoles are ubiquitous core structures present in many biologically active natural products and pharmaceutical molecules. Nickel-catalyzed reductive aryl-acylation of alkenes using aryl anhydrides or alkanoyl chlorides as acyl sources is developed, providing 3,3-disubstituted oxindoles bearing ketone functionality at the 3-position. Moreover, nickel-catalyzed reductive aryl-esterification of alkenes using chloroformate as ester sources is further developed, affording 3,3-disubstituted oxindoles bearing ester functionality at the 3-position. This strategy has the advantages of good yields and high functional group compatibility.
Collapse
Affiliation(s)
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel-Catalyzed Enantioselective Reductive Alkyl-Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022; 61:e202207536. [PMID: 35818326 PMCID: PMC9427719 DOI: 10.1002/anie.202207536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/16/2022]
Abstract
Herein, we leverage the Ni-catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed 1-Nap Quinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α-dialkylated γ-lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl-NiI intermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of the t-butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with 1-Nap Quinim compared to p-tol Quinim.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Sapkota RR, Tak RK, Aryal V, Niroula D, Secosky NC, Dhungana RK, Giri R. Cu-Catalyzed Cyclization/Coupling of Alkenyl Aldimines with Arylzinc Reagents: Access to Indole-3-diarylmethanes. Org Lett 2022; 24:6213-6218. [PMID: 35969494 DOI: 10.1021/acs.orglett.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a Cu(II)-catalyzed cyclization/coupling of alkenyl aldimines with arylzinc reagents to create indole-3-diarylmethane derivatives (Sapkota et al. ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-d6qn). The current reaction provides a unified modular route from readily available starting materials to indole-3-diarylmethanes in which all three arene cores can be decorated with differential functional substitutions on demand. Since the cyclization/coupling of alkenyl aldimines is unknown to date, the current method widens the scope with regard to both the substrate and product diversity for this class of reaction.
Collapse
Affiliation(s)
- Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raj Kumar Tak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas C Secosky
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel‐Catalyzed Enantioselective Reductive Alkyl‐Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianqing Wu
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Aneta Turlik
- UCLA: University of California Los Angeles Department of Chemistry and Biochemistry UNITED STATES
| | - Baixue Luan
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Feng He
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Jingping Qu
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Kendall N. Houk
- University of California, Los Angeles 607 Charles E Young Drive East 90095 Los Angeles UNITED STATES
| | - Yifeng Chen
- East China University of Science and Technology School of Chemistry and Molecular Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|
19
|
Aryal V, Chesley LJ, Niroula D, Sapkota RR, Dhungana RK, Giri R. Ni-Catalyzed Regio- and Stereoselective Alkylarylation of Unactivated Alkenes in γ,δ-Alkenylketimines. ACS Catal 2022; 12:7262-7268. [PMID: 37829145 PMCID: PMC10569404 DOI: 10.1021/acscatal.2c01697] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We disclose a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ-alkenylketimines with aryl halides and alkylzinc reagents. The reaction produces γ-C(sp3)-branched δ-arylketones with the construction of two new C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds. Electron-deficient alkenes play crucial dual roles as ligands to stabilize reaction intermediates and to increase catalytic rates for the formation of C(sp3)-C(sp3) bonds. This alkene alkylarylation reaction is also effective for secondary alkylzinc reagents and internal alkenes, and proceeds with a complete regio- and stereocontrol, affording products with up to three contiguous all-carbon all-cis secondary stereocenters.
Collapse
Affiliation(s)
- Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lucas J Chesley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
20
|
Yang M, Liu N, Zhang Z, She YB, Yang YF. Ni-Catalyzed Ligand-Controlled Selective 5-Exo and 6-Endo Cyclization/Cross-Couplings Involving an Unusual 1,2-Aryl Migration. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miao Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhanhao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
21
|
Zhao TY, Xiao LJ, Zhou QL. Nickel-Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6-Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022; 61:e202115702. [PMID: 35043525 DOI: 10.1002/anie.202115702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/13/2022]
Abstract
We have developed a nickel-catalyzed desymmetric reductive cyclization/coupling of 1,6-dienes. The reaction provides an efficient method for constructing a chiral tertiary alcohol and a quaternary stereocenter by a single operation. The method has excellent diastereoselectivity and high enantioselectivity, a broad substrate scope, as well as good tolerance of functional groups. Preliminary mechanism studies show that alkyl nickel(I) species are involved in the reaction.
Collapse
Affiliation(s)
- Tian-Yuan Zhao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Li-Jun Xiao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Qi-Lin Zhou
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
22
|
Zhao T, Xiao L, Zhou Q. Nickel‐Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6‐Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yuan Zhao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Li‐Jun Xiao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Qi‐Lin Zhou
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| |
Collapse
|
23
|
Wang G, Shen C, Ren X, Dong K. Ni-Catalyzed enantioselective reductive arylcyanation/cyclization of N-(2-iodo-aryl) acrylamide. Chem Commun (Camb) 2022; 58:1135-1138. [PMID: 34981092 DOI: 10.1039/d1cc04996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni/(S,S)-BDPP-catalyzed intramolecular Heck cyclization of N-(2-iodo-aryl) acrylamide with 2-methyl-2-phenylmalononitrile was developed to give oxindoles with good enantioselectivities. We found that utilizing such an electrophilic cyanation reagent could tackle the deleterious effect of the coordinative cyanide ion in the asymmetric alkene arylcyanation.
Collapse
Affiliation(s)
- Guangzhu Wang
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xinyi Ren
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| |
Collapse
|
24
|
Gao N, Li Y, Teng D. Nickel-catalysed cross-electrophile coupling of aryl bromides and primary alkyl bromides. RSC Adv 2022; 12:3569-3572. [PMID: 35425390 PMCID: PMC8979266 DOI: 10.1039/d2ra00010e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
The structure of primary alkylated arenes plays an important role in the molecular action of drugs and natural products. The nickel/spiro-bidentate-pyox catalysed cross-electrophile coupling of aryl bromides and primary alkyl bromides was developed for the formation of the Csp2-Csp3 bond, which provided an efficient method for the synthesis of primary alkylated arenes. The reactions could tolerate functional groups such as ester, aldehyde, ketone, ether, benzyl, and imide.
Collapse
Affiliation(s)
- Nanxing Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yanshun Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Dawei Teng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
25
|
Xiao L, Liu G, Ren P, Wu T, Lu Y, Kong J. Elemental Sulfur: An Excellent Sulfur-Source for Synthesis of Sulfur-Containing Heterocyclics. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Ping Y, Song H, Kong W. Recent Advances in Ni-Catalyzed Asymmetric Reductive Difunctionalization of Alkenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wang H, Huang H, Gong C, Diao Y, Chen J, Wu SH, Wang L. Nickel-Catalyzed Chemo- and Regioselective Benzylarylation of Unactivated Alkenes with o-Bromobenzyl Chlorides. Org Lett 2021; 24:328-333. [PMID: 34958584 DOI: 10.1021/acs.orglett.1c03991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chemo- and regioselectively nickel-catalyzed reductive benzylarylation of unactivated alkenes with o-bromobenzyl chlorides is disclosed herein, in which electrophiles participate through a single-component double-site approach. Moreover, its utility is underscored by the concise synthesis of bioactive Indane compounds and postreaction functionalizations leading to structurally diverse scaffolds. Preliminary mechanistic investigations suggest a radical chain reaction mechanism.
Collapse
Affiliation(s)
- Hailong Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Haichao Huang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Chao Gong
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Jianmei Chen
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
28
|
Cheng C, Xiang JN, Zhu YP, Peng ZH, Li JH. Nickel-Catalyzed Arylcarbamoylation of Alkenes of N-( o-Iodoaryl)acrylamides with Nitroarenes via Reductive Aminocarbonylation: Facile Synthesis of Carbamoyl-Substituted Oxindoles. Org Lett 2021; 23:9543-9547. [PMID: 34860537 DOI: 10.1021/acs.orglett.1c03762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nickel-catalyzed arylcarbamoylation reactions of alkenes of N-(o-haloaryl)acrylamides with CO and nitroarenes via reductive aminocarbonylation to produce carbamoyl-substituted oxindoles with an all-carbon quaternary stereogenic center are presented. Starting with N-(o-haloaryl)acrylamides, simple CO, and inexpensive nitroarenes and using a Ni catalyst, a dinitrogen-based ligand, a Zn reductant, a TMSCl additive, and a base system, this protocol enables the synthesis of various carbamoyl-substituted oxindoles and allows the efficient late-stage derivatization of valuable molecules.
Collapse
Affiliation(s)
- Chaozhihui Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jian-Nan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Zhi-Hong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
29
|
Willén D, Mastio R, Söderlund Z, Manner S, Westergren-Thorsson G, Tykesson E, Ellervik U. Azide-Functionalized Naphthoxyloside as a Tool for Glycosaminoglycan Investigations. Bioconjug Chem 2021; 32:2507-2515. [PMID: 34784477 PMCID: PMC8678990 DOI: 10.1021/acs.bioconjchem.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Indexed: 11/28/2022]
Abstract
We present a xylosylated naphthoxyloside carrying a terminal azide functionality that can be used for conjugation using click chemistry. We show that this naphthoxyloside serves as a substrate for β4GalT7 and induces the formation of soluble glycosaminoglycan (GAG) chains with physiologically relevant lengths and sulfation patterns. Finally, we demonstrate its usefulness by conjugation to the Alexa Fluor 647 and TAMRA fluorophores and coupling to a surface plasmon resonance chip for interaction studies with the hepatocyte growth factor known to interact with the GAG heparan sulfate.
Collapse
Affiliation(s)
- Daniel Willén
- Centre
for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roberto Mastio
- Centre
for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Zackarias Söderlund
- Department
of Experimental Medical Science, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden
| | - Sophie Manner
- Centre
for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | - Emil Tykesson
- Department
of Experimental Medical Science, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden
| | - Ulf Ellervik
- Centre
for Analysis and Synthesis, Centre for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- Department
of Experimental Medical Science, Lund University, P.O. Box 117, SE-221 00 Lund, Sweden
| |
Collapse
|
30
|
Jin Y, Wen H, Yang F, Ding D, Wang C. Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
31
|
Abstract
Herein we report a nickel-catalyzed asymmetric reductive dicarbamoylation of alkenes, in which tethered carbamoyl chlorides and isocyanates serve as distinct electrophilic carbamoylating agents, providing new access to chiral oxindoles bearing an amide-substituted quaternary stereogenic center.
Collapse
Affiliation(s)
- Jiaoyang Wu
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
32
|
Liu L, Cheng F, Meng C, Zhang AA, Zhang M, Xu K, Ishida N, Murakami M. Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Fangyuan Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxiang Meng
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - An-An Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Mingliang Zhang
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Kai Xu
- Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| |
Collapse
|
33
|
Fang K, Huang W, Shan C, Qu J, Chen Y. Synthesis of 3,3-Dialkyl-Substituted Isoindolinones Enabled by Nickel-Catalyzed Reductive Dicarbofunctionalization of Enamides. Org Lett 2021; 23:5523-5527. [PMID: 34181428 DOI: 10.1021/acs.orglett.1c01871] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the nickel-catalyzed reductive dicarbofunctionalization of 1,1-disubstituted enamides with unactivated alkyl iodides to access the 3,3-dialkyl-substituted isoindolinone frameworks. This tandem cyclization/reductive coupling protocol exhibits broad functional group tolerance under mild conditions. The utilization of commercially accessible chiral Bn-Biox ligand allows excellent enantioselectivities to forge the tetrasubstituted stereocenters.
Collapse
Affiliation(s)
- Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chunxiao Shan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
34
|
Cerveri A, Giovanelli R, Sella D, Pedrazzani R, Monari M, Nieto Faza O, López CS, Bandini M. Enantioselective CO 2 Fixation Via a Heck-Coupling/Carboxylation Cascade Catalyzed by Nickel. Chemistry 2021; 27:7657-7662. [PMID: 33829576 DOI: 10.1002/chem.202101082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/14/2022]
Abstract
A novel asymmetric nickel-based procedure has been developed in which CO2 fixation is achieved as a second step of a truncated Heck coupling. For this, a new chiral ligand has been prepared and shown to achieve enantiomeric excesses up to 99 %. The overall process efficiently furnishes chiral 2,3-dihydrobenzofuran-3-ylacetic acids, an important class of bioactive products, from easy to prepare starting materials. A combined experimental and computational effort revealed the key steps of the catalytic cycle and suggested the unexpected participation of Ni(I) species in the coupling event.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Giovanelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Davide Sella
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Riccardo Pedrazzani
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Olalla Nieto Faza
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Carlos Silva López
- Departamento de Química Orgánica, Universidade de Vigo, As Lagoas (Marcosende), 36310, Vigo, Spain
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Consorzio CINMPIS, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
35
|
Zhou JS, Huang X, Teng S, Chi YR. Nickel-catalyzed Heck reaction of cycloalkenes using aryl sulfonates and pivalates. Chem Commun (Camb) 2021; 57:3933-3936. [PMID: 33871493 DOI: 10.1039/d1cc00634g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel-catalyzed Heck reaction of cycloalkenes delivers unusual conjugated arylated isomers. Nickel(0) catalysts ligated by chelating dialkylphosphines effectively activate not only aryl triflates as electrophiles, but also less reactive aryl mesylates, tosylates and pivalates. The omission of bases allows nickel hydride species to exist long enough to perform in situ olefin isomerization of initial Heck adducts.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan, Shenzhen 518055, China.
| | - Xiaolei Huang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
36
|
Quirós MT, Collado-Sanz D, Buñuel E, Cárdenas DJ. On the mechanism of the formation of alkyl-Ni(I) catalysts. Chem Commun (Camb) 2021; 57:2424-2427. [PMID: 33554998 DOI: 10.1039/d1cc00203a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The formation of catalytically active alkyl-Ni(i) complexes by comproportionation of diorgano-Ni(ii) precursors and Ni(0) species proceeds easily through triplet states by alkyl ligand exchange. The process involves inversion of the configuration at the carbon that is transferred.
Collapse
Affiliation(s)
- M Teresa Quirós
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Daniel Collado-Sanz
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Elena Buñuel
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco, Madrid, 28049, Spain.
| | - Diego J Cárdenas
- Department of Organic Chemistry, Facultad de Ciencias, Universidad Autónoma de Madrid, Institute for Advanced Research in Chemical Sciences (IAdChem), Avd. Francisco Tomás y Valiente 7, Campus de Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
37
|
Huang X, Teng S, Chi YR, Xu W, Pu M, Wu Y, Zhou JS. Enantioselective Intermolecular Heck and Reductive Heck Reactions of Aryl Triflates, Mesylates, and Tosylates Catalyzed by Nickel. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaolei Huang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Shenghan Teng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Wenqiang Xu
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen China
| | - Maoping Pu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Yun‐Dong Wu
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
38
|
|
39
|
Reznikov AN, Ashatkina MA, Klimochkin YN. Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Org Biomol Chem 2021; 19:5673-5701. [PMID: 34113939 DOI: 10.1039/d1ob00496d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intramolecular carbometallation-initiated asymmetric transformations are a general and powerful approach for the construction of carbo- and heterocyclic systems with one and more stereocenters. In addition, the newly developed multiple cascade reactions are an attractive strategy for increasing the molecular complexity in one step. In recent years, great progress has been made in this area with the use of various palladium and nickel complexes with P- and N-donor chiral ligands. This review highlights recent developments in intramolecular asymmetric Heck reactions, reductive Heck reactions and various types of cascade transformations (intramolecular Heck/Heck, Heck/nucleophilic trapping, Heck/Tsuji-Trost, Heck/Suzuki-Miyaura, Heck/Sonogashira, and Heck/carbonylation) in the synthesis of complex molecules over the past 5 years. A number of examples from before 2016 are included as background information. Particular attention is paid to the use of inexpensive nickel complexes as highly efficient catalysts for a number of asymmetric reactions considered here. A perspective on current challenges and potential future developments in the field of asymmetric Heck type cyclizations is also provided.
Collapse
Affiliation(s)
- Alexander N Reznikov
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Maria A Ashatkina
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| | - Yuri N Klimochkin
- Samara State Technical University, 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
| |
Collapse
|
40
|
Huang X, Teng S, Chi YR, Xu W, Pu M, Wu Y, Zhou JS. Enantioselective Intermolecular Heck and Reductive Heck Reactions of Aryl Triflates, Mesylates, and Tosylates Catalyzed by Nickel. Angew Chem Int Ed Engl 2020; 60:2828-2832. [DOI: 10.1002/anie.202011036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaolei Huang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Shenghan Teng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Wenqiang Xu
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen China
| | - Maoping Pu
- Shenzhen Bay Laboratory Shenzhen 518055 China
| | - Yun‐Dong Wu
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School 2199 Lishui Road, Room F312 Nanshan District Shenzhen 518055 China
| |
Collapse
|
41
|
Li Y, Zhang FP, Wang RH, Qi SL, Luan YX, Ye M. Carbamoyl Fluoride-Enabled Enantioselective Ni-Catalyzed Carbocarbamoylation of Unactivated Alkenes. J Am Chem Soc 2020; 142:19844-19849. [PMID: 33170685 DOI: 10.1021/jacs.0c09949] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A carbamoyl fluoride-enabled enantioselective Ni-catalyzed carbocarbamoylation of unactivated alkenes was developed, providing a broad range of chiral γ-lactams bearing an all-carbon quaternary center in 45-96% yield and 38-97% ee.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feng-Ping Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Haibach MC, Ickes AR, Wilders AM, Shekhar S. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
43
|
Wang L, Wang C. Nickel-Catalyzed Three-Component Reductive Alkylacylation of Electron-Deficient Activated Alkenes. Org Lett 2020; 22:8829-8835. [DOI: 10.1021/acs.orglett.0c03210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
44
|
Feng Y, Yang S, Zhao S, Zhang DP, Li X, Liu H, Dong Y, Sun FG. Nickel-Catalyzed Reductive Aryl Thiocarbonylation of Alkene via Thioester Group Transfer Strategy. Org Lett 2020; 22:6734-6738. [PMID: 32790998 DOI: 10.1021/acs.orglett.0c02091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein reported is a nickel-catalyzed reductive aryl thiocarbonylation of alkene via thioester group transfer strategy by using simple and readily available thioesters. In contrast to traditional activation of weaker C(acyl)-S bond, the C(acyl)-C bond of thioester was selectively cleaved to enable this reaction under mild conditions. Furthermore, this approach features operational simplicity and broad substrate scope, providing a complementary and practical route for thioester synthesis without requiring toxic thiol or CO gas.
Collapse
Affiliation(s)
- Yunxia Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Shimin Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Shen Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Dao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Feng-Gang Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
45
|
Poremba KE, Dibrell SE, Reisman SE. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions. ACS Catal 2020; 10:8237-8246. [PMID: 32905517 PMCID: PMC7470226 DOI: 10.1021/acscatal.0c01842] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nickel-catalyzed reductive cross-coupling reactions have emerged as powerful methods to join two electrophiles. These reactions have proven particularly useful for the coupling of sec-alkyl electrophiles to form stereogenic centers; however, the development of enantioselective variants remains challenging. In this Perspective, we summarize the progress that has been made toward Ni-catalyzed enantioselective reductive cross-coupling reactions.
Collapse
Affiliation(s)
- Kelsey E. Poremba
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sara E. Dibrell
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Abstract
1,2-Dicarbofunctionalization of alkenes has emerged as an efficient synthetic strategy for preparing substituted molecules by coupling readily available alkenes with electrophiles and/or nucleophiles. Nickel complexes serve as effective catalysts owing to their tendency to undergo facile oxidative addition and slow β-hydride elimination, and their capability to access both two-electron and radical pathways. Two-component alkene functionalization reactions have achieved high chemo-, regio-, and stereoselectivities by tethering one of the coupling partners to the alkene substrate. Three-component reactions, however, often incorporate directing groups to control the selectivity. Only a few examples of directing-group-free difunctionalizations of unactivated alkenes have been reported. Therefore, great opportunities exist for the development of three-component difunctionalization reactions with broad substrate scopes and tunable chemo-, regio-, and stereoselectivities.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
47
|
Affiliation(s)
- Yun‐Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
48
|
Abstract
The merger of cross-electrophile coupling and asymmetric catalysis provides a novel approach to the preparation of optically active compounds. This method is often endowed with high step economy, mild conditions, and excellent tolerance of functional groups. Recent advances in the research field of nickel-catalyzed asymmetric cross-electrophile coupling reactions are highlighted in this concise Synpacts article.1 Introduction2 Asymmetric Cross-Electrophile Coupling Reactions between Organohalides3 Asymmetric Electrophilic Ring-Opening Reactions4 Asymmetric Electrophilic Difunctionalization of Alkenes4.1 Two-Component Electrophilic Difunctionalization of Alkenes Involving Arylnickelation as an Enantiodetermining Step4.2 Two-Component Electrophilic Difunctionalization of Alkenes Involving Carbamoylnickelation as an Enantiodetermining Step4.3 Three-Component Electrophilic Difunctionalization of Alkenes5 Asymmetric Electrophilic Functionalization of Carbonyl Compounds6 Summary
Collapse
Affiliation(s)
- Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China
- Center for Excellence in Molecular Synthesis of CAS
| | - Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China
| |
Collapse
|