1
|
Yao Z, Tang Z, Zhao D. Triflic Anhydride-Mediated Friedel-Crafts Arylation of Quinazolin-4(3H)-ones. Chem Asian J 2025; 20:e202401285. [PMID: 39600234 DOI: 10.1002/asia.202401285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
Since the initial report, the Friedel-Crafts reaction has become a powerful tool to functionalize arenes. Nevertheless, the use of nitrogen heterocycles as electrophiles in Friedel-Crafts reactions has been less explored. Here, we show a Friedel-Crafts-like reaction of electron-rich arenes with quinazolin-4(3H)-ones, enabling late-stage C2-H arylation of quinazolin-4(3H)-ones via triflic anhydride (Tf2O) activation. A series of substrates can be efficiently coupled under mild reaction conditions, affording C(sp3)-C(sp2) coupling product 2-aryl dihydroquinazolinones that can be further converted into the corresponding quinazolinone in the presence of base. This methodology offers efficient access to 2-aryl quinazolin-4(3H)-ones and exhibits good functional group compatibility and site selectivity. Mechanistic investigations reveal the formation of highly electrophilic iminium intermediates upon Tf2O activation of quinazolin-4(3H)-ones, which serve as the key reactive species, enabling the Friedel-Crafts reaction to proceed efficiently.
Collapse
Affiliation(s)
- Zhenying Yao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhanyong Tang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
3
|
Han F, Xie F, Yin M, Jing L, Han P. Electroreductive carboxylation of benzylphosphonium salts with CO 2 through the cleavage of the C(sp 3)-P bond. Org Biomol Chem 2024; 22:5724-5728. [PMID: 38957074 DOI: 10.1039/d4ob00838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, a electroreductive carboxylation of benzylphosphonium salts was achieved by the cleavage of the C(sp3)-P bond, and various valuable arylacetic acids could be synthesized by this strategy. Also, based on control experiments and previous studies, a plausible reaction mechanism was proposed to explain the reaction process. The establishment of this procedure will provide a new paradigm for the functionalization of alkyl phosphonium salts.
Collapse
Affiliation(s)
- Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
4
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
5
|
Zhao Y, Gao Y, Xie Z, Liao S, Huang J, Huo Y, Chen Q, Li X, Hu XQ. Tf 2O-Promoted Chemoselective C3 Functionalization of Anthranils with Phenols and Thiophenols. J Org Chem 2023. [PMID: 37400425 DOI: 10.1021/acs.joc.3c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Different chemoselectivities of phenols and thiophenols were observed in a Tf2O-promoted C3 functionalization of simple anthranils. The reaction of phenols and anthranils gives 3-aryl anthranils via a C-C bond formation, whereas thiophenols afford 3-thio anthranils through a C-S bond formation. Both reactions have a broad substrate scope and tolerate a wide range of functional groups, affording the corresponding products with specific chemoselectivity.
Collapse
Affiliation(s)
- Yupeng Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Zhongke Xie
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shuwei Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiebin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
6
|
Thobokholt EN, Simonetti SO, Kaufman TS, Larghi EL, Bracca ABJ. Efficient Buchwald-Hartwig and nitrene-mediated five-membered ring closure approaches to the total synthesis of quindoline. Unexpected direct conversion of a nitro group into a phosphazene. RSC Adv 2023; 13:13715-13724. [PMID: 37152581 PMCID: PMC10162371 DOI: 10.1039/d3ra02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023] Open
Abstract
Two total syntheses of quindoline, which take place through the intermediacy of 3-nitroquinoline derivatives, are reported. The general synthetic sequence involves construction of the latter by mechanochemical condensation of benzaldehydes with 2-amino-nitrostyrene, followed either by reduction of the nitro group of the heterocycle and Buchwald-Hartwig cyclization or by a nitrene-mediated cyclization under solventless conditions. Use of PPh3 to generate the nitrene resulted in the unprecedented formation of a phosphazene in place of quindoline. This unexpected transformation was explained by means of DFT computations.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 2000 Rosario Argentina
| |
Collapse
|
7
|
Qin Q, Cheng Z, Jiao N. Recent Applications of Trifluoromethanesulfonic Anhydride in Organic Synthesis. Angew Chem Int Ed Engl 2023; 62:e202215008. [PMID: 36541579 DOI: 10.1002/anie.202215008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Trifluoromethanesulfonic anhydride has been widely used in synthetic organic chemistry, not only for the conversion of various oxygen-containing compounds to the triflates, but also for the electrophilic activation and further conversion of amides, sulfoxides, and phosphorus oxides. In recent years, the utilization of Tf2 O as an activator for nitrogen-containing heterocycles, nitriles and nitro groups has become a promising tool for the development of new valuable methods with considerable success. In addition, Tf2 O has been used as an efficient radical trifluoromethylation and trifluoromethylthiolation reagent due to the contained SO2 CF3 fragment, and significant progress has been made in this area. This review summarizes the recent progress in the applications of Tf2 O in the above two aspects, and aims to illustrate the role and potential application of this reagent in organic synthesis.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
8
|
Zhu M, Yu W, Zhong Q, Cui B, Cao C, Shi Y. Nickel-catalyzed Suzuki cross-coupling reaction of alkyl triaryl phosphonium salts. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
9
|
Vetrichelvan M, Sankar U, Bokkala V, Akunuri A, Ramesh N, Pitchai M, Mathur A, Gupta A. Chlorotrimethylsilane and Sodium Iodide: An Expedient Combination for the Chemo/Regioselective Dehalogenation of Benzothiazole and Thiazole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202203856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Muthalagu Vetrichelvan
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Ulaganathan Sankar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Vijayabhaskar Bokkala
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Arun Akunuri
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Natesan Ramesh
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Manivel Pitchai
- Department of Discovery Synthesis Biocon Bristol Myers Squibb R&D Centre Syngene International Ltd. Biocon Park, Plot No. 2 & 3, Jigani Link Road, Bommasandra IV Bangalore 560 099 India
| | - Arvind Mathur
- Department of Discovery Synthesis Small Molecule Drug Discovery Bristol Myers Squibb Research and Early Development P.O. Box 5400 Princeton New Jersey 08543-4000 USA
| | - Anuradha Gupta
- Department of Discovery Synthesis Small Molecule Drug Discovery Bristol Myers Squibb Research and Early Development P.O. Box 5400 Princeton New Jersey 08543-4000 USA
| |
Collapse
|
10
|
Ma J, Feng R, Zhou HL, Hao EJ, Shi Z, Dong ZB. One-Pot Synthesis of N,N-Diphenyl-2-benzothiazolamines from 1-(2-Iodophenyl)-3-phenylthioureas and Iodobenzenes. J Org Chem 2022; 87:14342-14351. [PMID: 36200367 DOI: 10.1021/acs.joc.2c01789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient copper-catalyzed synthesis of a variety of N,N-diphenyl-2-benzothiazolamines was developed. Starting from substituted 1-(2-iodophenyl)-3-phenylthioureas and substituted iodobenzenes, the reaction proceeded smoothly via a tandem manner in the presence of CuI to afford the corresponding N,N-diphenyl-2-benzothiazolamine derivatives with good functional group tolerance. The protocol features simple performance, easily available starting materials, a one-pot manner, and good functional group tolerance, providing a practical strategy for the preparation of poly-functionalized amines.
Collapse
Affiliation(s)
- Jie Ma
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Hao-Lin Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhen Shi
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
11
|
Shennan BDA, Berheci D, Crompton JL, Davidson TA, Field JL, Williams BA, Dixon DJ. Branching out: redox strategies towards the synthesis of acyclic α-tertiary ethers. Chem Soc Rev 2022; 51:5878-5929. [PMID: 35770619 DOI: 10.1039/d1cs00669j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.
Collapse
Affiliation(s)
- Benjamin D A Shennan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Diana Berheci
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Jessica L Crompton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy A Davidson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Joshua L Field
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Benedict A Williams
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
12
|
Kook GY, Kim D, Chae MK, Ko HM. Rhodium(II)-Catalyzed Highly Selective 1,3-Insertion Reactions Using N-Sulfonyl-1,2,3-Triazoles with Heteroaryl Ethers or Heteroaryl Alcohols. J Org Chem 2022; 87:7253-7263. [PMID: 35604873 DOI: 10.1021/acs.joc.2c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transformation of N-sulfonyl-1,2,3-triazoles via insertion/rearrangement is achieved using 2-hydroxybenzimidazole or 2-alkoxybenzothiazole over 3 mol % Rh2(Oct)4 for the synthesis of α-((1H-benzo[d]imidazol-2-yl)amino) ketones or (Z)-2-alkoxy-2-phenylethenamines. This regio- and stereoselective reaction proceeds under mild conditions, is tolerant of functional groups, and has a broad substrate scope. Notably, while the general rhodium-catalyzed reaction involves sigmatropic rearrangement from an allyl vinyl ether, the present synthetic methodology prevents rearrangement owing to the benzimidazole group, allowing access to (Z)-olefins.
Collapse
Affiliation(s)
- Ga Young Kook
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Daegeun Kim
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Min Ki Chae
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Haye Min Ko
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.,Wonkwang Institute of Materials Science and Technology, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
13
|
Zhu YS, Shi L, Fu L, Chen X, Zhu X, Hao XQ, Song MP. Iodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Huang W, Ding X, Zi Y. Research Progress of Vinyl/Aryl Phosphonium Salts in Organic Synthesis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Babu KN, Massarwe F, Shioukhi I, Masarwa A. Sequential Selective C-H and C(sp 3 )- + P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angew Chem Int Ed Engl 2021; 60:26199-26209. [PMID: 34618394 DOI: 10.1002/anie.202111164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Organophosphonium salts containing C(sp3 )-+ P bonds are among the most utilized reagents in organic synthesis for constructing C-C double bonds. However, their use as C-selective electrophilic groups is rare. Here, we explore an efficient and general transition-metal-free method for sequential chemo- and regioselective C-H and C(sp3 )-+ P bond functionalizations. In the present study, C-H alkylation resulting in the synthesis of benzhydryl triarylphosphonium salts was achieved by one-pot, four-component cross-coupling reactions of simple and commercially available starting materials. The utility of the resulting phosphonium salt building blocks was demonstrated by the chemoselective post-functionalization of benzylic C(sp3 )-+ PPh3 groups to achieve aminations, thiolations, and arylations. In this way, benzhydrylamines, benzhydrylthioethers, and triarylmethanes, structural motifs that are present in many pharmaceuticals and agrochemicals, are readily accessed. These include the synthesis of two anticancer agents from simple materials in only two to three steps. Additionally, a protocol for late-stage functionalization of bioactive drugs has been developed using benzhydrylphosphonium salts. This new approach should provide novel transformations for application in both academic and pharmaceutical research.
Collapse
Affiliation(s)
- K Naresh Babu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Fedaa Massarwe
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Israa Shioukhi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
17
|
Babu KN, Massarwe F, Shioukhi I, Masarwa A. Sequential Selective C−H and C(sp
3
)−
+
P Bond Functionalizations: An Entry to Bioactive Arylated Scaffolds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. Naresh Babu
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Fedaa Massarwe
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Israa Shioukhi
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Ahmad Masarwa
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
18
|
Wang H, Yang M, Wang Y, Man X, Lu X, Mou Z, Luo Y, Liang H. Nickel-Catalyzed Reductive Csp 2-Csp 3 Cross Coupling Using Phosphonium Salts. Org Lett 2021; 23:8183-8188. [PMID: 34664959 DOI: 10.1021/acs.orglett.1c02893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed reductive cross coupling with phosphonium salts and allylic C(sp3)-O bond electrophiles, which granted direct construction of the C(sp2)-C(sp3) bond, is successfully developed. The protocol features broad substrate scope, high-functional-group tolerance, and heterocycle compatibility. Notably, the much more challenging reductive cross coupling with heterocyclic thiazolylphosphonium salts has also been accomplished for the first time.
Collapse
Affiliation(s)
- Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.,State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mengwan Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xi Man
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xinyao Lu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yunjie Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
trans-Selective hydrocyanation of ynoates, ynones and ynoic acids catalyzed by nucleophilic phosphines. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Puleo TR, Klaus DR, Bandar JS. Nucleophilic C-H Etherification of Heteroarenes Enabled by Base-Catalyzed Halogen Transfer. J Am Chem Soc 2021; 143:12480-12486. [PMID: 34347457 DOI: 10.1021/jacs.1c06481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a general protocol for the direct C-H etherification of N-heteroarenes. Potassium tert-butoxide catalyzes halogen transfer from 2-halothiophenes to N-heteroarenes to form N-heteroaryl halide intermediates that undergo tandem base-promoted alcohol substitution. Thus, the simple inclusion of inexpensive 2-halothiophenes enables regioselective oxidative coupling of alcohols with 1,3-azoles, pyridines, diazines, and polyazines under basic reaction conditions.
Collapse
Affiliation(s)
- Thomas R Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Danielle R Klaus
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
21
|
Bugaenko DI, Yurovskaya MA, Karchava AV. From Pyridine- N-oxides to 2-Functionalized Pyridines through Pyridyl Phosphonium Salts: An Umpolung Strategy. Org Lett 2021; 23:6099-6104. [PMID: 34269594 DOI: 10.1021/acs.orglett.1c02165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reactions of pyridine-N-oxides with Ph3P under the developed conditions provide an unprecedented route to (pyridine-2-yl)phosphonium salts. Upon activation with DABCO, these salts readily serve as functionalized 2-pyridyl nucleophile equivalents. This umpolung strategy allows for the selective C2 functionalization of the pyridine ring with electrophiles, avoiding the generation and use of unstable organometallic reagents. The protocol operates at ambient temperature and tolerates sensitive functional groups, enabling the synthesis of otherwise challenging compounds.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119992, Russia
| | | | | |
Collapse
|
22
|
Xie C, Smaligo AJ, Song XR, Kwon O. Phosphorus-Based Catalysis. ACS CENTRAL SCIENCE 2021; 7:536-558. [PMID: 34056085 PMCID: PMC8155461 DOI: 10.1021/acscentsci.0c01493] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/08/2023]
Abstract
Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.
Collapse
Affiliation(s)
- Changmin Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Andrew J. Smaligo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | | | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
23
|
Zi Y, Wagner K, Schömberg F, Vilotijevic I. Selective C-H chalcogenation of thiazoles via thiazol-2-yl-phosphonium salts. Org Biomol Chem 2021; 18:5183-5191. [PMID: 32588864 DOI: 10.1039/d0ob00684j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thiazoles and benzothiazoles undergo regioselective C2-H chalcogenation via the sequence of thiazole C2-functionalization with phosphines to produce phosphonium salts which in turn react with S- and Se-centered nucleophiles to give products of C2-H chalcogenation and allow for recovery of the starting phosphine. The atom economical sequence proceeds under mild conditions and features broad scope for both the nucleophiles (electron-rich, electron-poor, sterically hindered thiols) and the various substituted benzothiazoles. The access to the substituted medicinally relevant C2-thio benzothiazoles also enables stereoselectivity improvements in the modified Julia olefinations.
Collapse
Affiliation(s)
- You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Konrad Wagner
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| |
Collapse
|
24
|
Seifert F, Drikermann D, Steinmetzer J, Zi Y, Kupfer S, Vilotijevic I. Z-Selective phosphine promoted 1,4-reduction of ynoates and propynoic amides in the presence of water. Org Biomol Chem 2021; 19:6092-6097. [PMID: 34152338 DOI: 10.1039/d1ob00909e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphine-mediated reductions of substituted propynoic esters and amides in the presence of water yield the partially reduced α,β-unsaturated esters and amides with high Z-selectivity. The competitive in situ Z to E-isomerization of the product in some cases lowers the Z to E ratios of the isolated α,β-unsaturated carbonyl products. Reaction time and the amounts of phosphine and water in the reaction mixture are the key experimental factors which control the selectivity by preventing or reducing the rates of Z- to E-product isomerization. Close reaction monitoring enables isolation of the Z-alkenes with high selectivities. The computational results suggest that the reactions could be highly Z-selective owing to the stereoselective formation of the E-P-hydroxyphosphorane intermediate.
Collapse
Affiliation(s)
- Fabian Seifert
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Denis Drikermann
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Johannes Steinmetzer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| |
Collapse
|
25
|
Fujimoto H, Kodama T, Yamanaka M, Tobisu M. Phosphine-Catalyzed Intermolecular Acylfluorination of Alkynes via a P(V) Intermediate. J Am Chem Soc 2020; 142:17323-17328. [DOI: 10.1021/jacs.0c08928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hayato Fujimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|