1
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Kariapper FS, Miccolis F, Pilicer SL, Wolf C. Chiroptical Sensing of Amines With Isatins. Chirality 2024; 36:e70002. [PMID: 39449160 DOI: 10.1002/chir.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Isatins are extensively researched compounds with diverse applications, particularly as synthetic precursors in pharmaceutical developments. However, their use as optical probes for enantioselective sensing of chiral amines has not been explored to date. Herein, we present a novel chiroptical assay with an optimized isatin that generates strong, red-shifted circular dichroism (CD) signals at approximately 380 nm upon ketimine formation with chiral amines. The intensity of the induced CD signal increases linearly with the enantiomeric excess of the analyte and thus allows quantitative chirality analysis. The general usefulness of this approach is demonstrated with a broad range of aliphatic and aromatic chiral amines, and by accurate determination of the enantiomeric composition of 10 samples.
Collapse
Affiliation(s)
| | - Flavia Miccolis
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | | | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC, USA
| |
Collapse
|
3
|
Gutierrez DA, Toth-Williams G, Laconsay CJ, Yasuda M, Fettinger JC, Di Maso MJ, Shaw JT. Desymmetrization of Cyclic Sulfonimidamides by Asymmetric Allylation. Angew Chem Int Ed Engl 2024; 63:e202407114. [PMID: 38719740 DOI: 10.1002/anie.202407114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 07/13/2024]
Abstract
Herein we report the first transition metal-catalyzed approach to the enantioenriched synthesis of cyclic sulfonimidamides relying on commercially available palladium catalysts and ligands. High-throughput experimentation (HTE) was employed to identify the optimal catalyst system and solvent. The method is applied to a variety of saturated and unsaturated rings and exhibits the highest selectivity for 2-substituted allyl electrophiles. The products are further elaborated to complex, tricyclic scaffolds. DFT experiments presented herein highlight the key ligand substrate interactions leading to the high levels of enantioselectivity.
Collapse
Affiliation(s)
- David A Gutierrez
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis California, 95616, United States
| | - Garrett Toth-Williams
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis California, 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston Texas, 77004, United States
| | - Michael Yasuda
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis California, 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis California, 95616, United States
| | - Michael J Di Maso
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, 07065, United States
| | - Jared T Shaw
- Department of Chemistry, University of California, Davis, One Shields Ave., Davis California, 95616, United States
| |
Collapse
|
4
|
Kataoka S, Morimoto H, Ohshima T. Primary Allylic Amine Synthesis via Pd-Catalyzed Direct Amination of Allylic Alcohols with Ammonium Acetate. J Org Chem 2024; 89:10693-10697. [PMID: 39008521 DOI: 10.1021/acs.joc.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Pd/DPEphos-catalyzed direct amination of allylic alcohols with readily available ammonium acetate as a nitrogen source provides access to convenient and scalable syntheses of primary allylic amines with high monoallylation selectivity. Mechanistic studies revealed that ammonium acetate functions as a Brønsted acid to activate the hydroxyl groups and inhibit overreaction.
Collapse
Affiliation(s)
- Shunsuke Kataoka
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Liu L, Luo R, Tong J, Liao J. Iridium-catalysed reductive allylic amination of α,β-unsaturated aldehydes. Org Biomol Chem 2024; 22:585-589. [PMID: 38131265 DOI: 10.1039/d3ob01753b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Allylic amination is a powerful tool for constructing N-allylic amines widely found in bioactive molecules. Generally, allylic alcohols and unsaturated hydrocarbons have been considered for allylic amination reactions to minimize waste production. Herein, we present an iridium-catalysed method for reductive allylic amination of α,β-unsaturated aldehydes with amines to afford N-allylic amines under air conditions. This protocol is demonstrated to provide products from many substrates (41 examples) in moderate-to-excellent yields. This synthetic methodology is also highlighted by the synthesis of drug molecules, optically pure products, as well as scale-up experiments.
Collapse
Affiliation(s)
- Liang Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan, 512005, Guangdong Province, P. R. China
| | - Jinghui Tong
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| | - Jianhua Liao
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
6
|
Shing Cheung KP, Fang J, Mukherjee K, Mihranyan A, Gevorgyan V. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines. Science 2022; 378:1207-1213. [PMID: 36520916 PMCID: PMC10111612 DOI: 10.1126/science.abq1274] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aliphatic allylic amines are found in a great variety of complex and biorelevant molecules. The direct allylic C-H amination of alkenes serves as the most straightforward method toward these motifs. However, use of widely available internal alkenes with aliphatic amines in this transformation remains a synthetic challenge. In particular, palladium catalysis faces the twin challenges of inefficient coordination of Pd(II) to internal alkenes but excessively tight and therefore inhibitory coordination of Pd(II) by basic aliphatic amines. We report a general solution to these problems. The developed protocol, in contrast to a classical Pd(II/0) scenario, operates through a blue light-induced Pd(0/I/II) manifold with mild aryl bromide oxidant. This open-shell approach also enables enantio- and diastereoselective allylic C-H amination.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Andranik Mihranyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of
Texas at Dallas, Richardson, TX 75080, USA
- Department of Biochemistry, The University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Khan S, Shah BH, Zhao C, Zhang YJ. Pd-Catalyzed regio- and stereoselective allylic substitution of vinylethylene carbonates with 1,2,4-triazoles. Org Biomol Chem 2022; 20:6532-6536. [PMID: 35880932 DOI: 10.1039/d2ob01156e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N 1-Substituted 1,2,4-triazoles are ubiquitous skeletons in medicinal agents, agrochemicals, and organic materials. Herein, an efficient and practical method for the synthesis of N1-allylated 1,2,4-triazoles via Pd-catalyzed allylic substitution of vinylethylene carbonates (VECs) with 1,2,4-triazoles has been developed. By using a catalyst generated in situ from Pd2(dba)3·CHCl3 and DPPE under mild conditions, the process allows rapid access to N1-allylated 1,2,4-triazoles bearing diverse functionalities in high yields with excellent N1-selectivities, linear-selectivities, and Z-stereoselectivities.
Collapse
Affiliation(s)
- Sardaraz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Babar Hussain Shah
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Can Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
8
|
Mate NA, Meador RIL, Joshi BD, Chisholm JD. Alkylation of Isatins with Trichloroacetimidates. Org Biomol Chem 2022; 20:2131-2136. [DOI: 10.1039/d2ob00127f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Alkylation of isatins can be achieved utilizing trichloroacetimidate electrophiles and a Lewis acid catalyst. These reactions provide access to N-alkyl isatins, versatile scaffolds which are often employed in the synthesis...
Collapse
|
9
|
Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Jiang Q, Wang P, Yang Z, Tang S, Zhang H. Palladium-catalyzed nitrogen-selective addition reaction of indoles to glycals. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1952602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qian Jiang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Panpan Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Zhen Yang
- Department of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, P. R. China
| | - Shouchu Tang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China
| | - Hongrui Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
11
|
Albat D, Reiher M, Neudörfl J, Schmalz H. Improved Synthesis of MediPhos Ligands and Their Use in the Pd‐Catalyzed Enantioselective N‐Allylation of Glycine Esters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dominik Albat
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Martin Reiher
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Jörg‐Martin Neudörfl
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| | - Hans‐Günther Schmalz
- Department of Chemistry University of Cologne Greinstrasse 4 50939 Koeln Germany
| |
Collapse
|
12
|
Das K, Sarkar K, Maji B. Manganese-Catalyzed Anti-Markovnikov Hydroamination of Allyl Alcohols via Hydrogen-Borrowing Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01199] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
13
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|