1
|
Zhang J, Liu S, Guo Y, Liu Y, Zhang K, Tan X, Fang L. Trichloroacetonitrile-Mediated Oxidation of Sulfides and Benzylic C-H Bonds via Photoexcited Radical Reactions under Clean Conditions. Org Lett 2025. [PMID: 40424075 DOI: 10.1021/acs.orglett.5c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The protocol using only trichloroacetonitrile (CCl3CN) or CCl3CN/methanol to achieve oxidation of sulfides and benzylic C-H bonds in open air was established. Highly selective oxidation of sulfides to sulfoxides and efficient oxidation of benzylic C-H bonds were realized under clean and mild conditions, respectively. The main features of this protocol are a wide substrate scope, high yields, gram-scale preparation, and efficient conversion of various pharmaceutical molecules. The reactions were performed in air under light irradiation, and the mechanism was demonstrated to involve a radical process. This protocol provides a sustainable and straightforward method for the oxidation of sulfides and benzylic C-H bonds.
Collapse
Affiliation(s)
- Jialiang Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shuaikun Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yingchang Guo
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yi Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Kunyi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xinqiang Tan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
2
|
Shao H, Liu W, Fang Z, He H, Gao S. Synthesis of the DEF-Ring Spirocyclic Core of Cyclopamine. J Org Chem 2024; 89:4215-4220. [PMID: 38391306 DOI: 10.1021/acs.joc.3c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
A stereoselective synthesis of the DEF-ring spirocyclic core of cyclopamine was accomplished using commercially available materials. The key steps in the synthesis were (i) the enantioselective vinylogous Mannich reaction, followed by lactamization to generate the piperidine F ring, and (ii) intramolecular oxidative dearomative spiroetherification to construct the DEF-ring spirocyclic core of cyclopamine. We found that the stereochemistry of the spirocyclization was controlled by the configuration of the methyl group (C-20) in the substrate.
Collapse
Affiliation(s)
- Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wenheng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhengqi Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Haibing He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
3
|
Zhang J, Sun M, Gao K, Wu H, Li J, Wang Z, Yang J. Synthesis of Fluorine-Containing Multisubstituted Oxa-Spiro[4,5]cyclohexadienones via a Fluorinated Alcohol-Catalyzed One-Pot Sequential Cascade Strategy. J Org Chem 2024; 89:2847-2857. [PMID: 38364825 DOI: 10.1021/acs.joc.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In recent years, the application of fluorinated alcohols as solvents, cosolvents, or additives has become important in modern organic synthesis. However, their potential as efficient catalysts in organic synthesis has not been well-explored. In this article, we report on the development of a one-pot sequential cascade reaction of p-quinone methides with difluoroenoxysilanes using hexafluoroisopropanol as catalyst. This reaction allows for the preparation of fluorinated multisubstituted oxa-spiro[4,5]cyclohexadienones. By using 50 mol % 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP), the reaction proceeds smoothly to yield 1,6-conjugated products, which are then subjected to oxidative dearomatization/hemiacetalization using PhI(OAc)2. The overall process affords moderate to high yields and excellent diastereoselectivities.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jinshan Li
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| |
Collapse
|
4
|
Jin Y, Hok S, Bacsa J, Dai M. Convergent and Efficient Total Synthesis of (+)-Heilonine Enabled by C-H Functionalizations. J Am Chem Soc 2024; 146:1825-1831. [PMID: 38226869 PMCID: PMC10811669 DOI: 10.1021/jacs.3c13492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
We report a convergent and efficient total synthesis of the C-nor D-homo steroidal alkaloid (+)-heilonine with a hexacyclic ring system, nine stereocenters, and a trans-hydrindane moiety. Our synthesis features four selective C-H functionalizations to form key C-C bonds and stereocenters, a Stille carbonylative cross-coupling to connect the AB ring system with the DEF ring system, and a Nazarov cyclization to construct the five-membered C ring. These enabling transformations significantly reduced functional group manipulations and delivered (+)-heilonine in 11 or 13 longest linear sequence (LLS) steps.
Collapse
Affiliation(s)
- Yuan Jin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sovanneary Hok
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Shao H, Liu W, Liu M, He H, Zhou QL, Zhu SF, Gao S. Asymmetric Synthesis of Cyclopamine, a Hedgehog (Hh) Signaling Pathway Inhibitor. J Am Chem Soc 2023; 145:25086-25092. [PMID: 37948601 DOI: 10.1021/jacs.3c10362] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cyclopamine is a teratogenic steroidal alkaloid, which inhibits the Hedgehog (Hh) signaling pathway by targeting the Smoothened (Smo) receptor. Suppression of Hh signaling with synthetic small molecules has been pursued as a therapeutic approach for the treatment of cancer. We report herein the asymmetric synthesis of cyclopamine based on a two-stage relay strategy. Stage-I: total synthesis of veratramine through a convergent approach, wherein a crucial photoinduced excited-state Nazarov reaction was applied to construct the basic [6-6-5-6] skeleton of C-nor-D-homo-steroid. Stage-II: conversion of veratramine to cyclopamine was achieved through a sequence of chemo-selective redox manipulations.
Collapse
Affiliation(s)
- Hao Shao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenheng Liu
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| | - Muhan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haibing He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Petroleum Molecular and Process engineering, SKLPMPE, Sinopec research institute of petroleum processing Co., LTD., Beijing 100083, China, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Sofiadis M, Xu D, Rodriguez AJ, Nissl B, Clementson S, Petersen NN, Baran PS. Convergent Total Synthesis of (-)-Cyclopamine. J Am Chem Soc 2023; 145:21760-21765. [PMID: 37782691 PMCID: PMC10696607 DOI: 10.1021/jacs.3c09085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A concise and enantioselective total synthesis of the Veratrum alkaloid cyclopamine is disclosed. This highly convergent synthesis with a 16-step longest linear sequence (LLS) was enabled by a de novo synthesis of the trans-6,5-heterobicycle via a strain-inducing halocyclization process, a key Tsuji-Trost cyclization to construct the fully substituted, spirocyclic THF motif with exquisite diastereocontrol, and a late-stage ring-closing metathesis (RCM) reaction to forge the central tetrasubstituted olefin.
Collapse
Affiliation(s)
- Manolis Sofiadis
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Dongmin Xu
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Anthony J. Rodriguez
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Benedikt Nissl
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | | | | | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
7
|
Guo Y, Lu JT, Fang R, Jiao Y, Liu J, Luo T. Enantioselective Total Synthesis of (-)-Zygadenine. J Am Chem Soc 2023; 145:20202-20207. [PMID: 37683183 DOI: 10.1021/jacs.3c08039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
The Veratrum alkaloids are highly complex steroidal alkaloids characterized by their intricate structural and stereochemical features and exhibit a diverse range of pharmacological activities. A new synthetic pathway has been developed to access this family of natural products, which enabled the first total synthesis of (-)-zygadenine. This synthetic route entails the construction of a hexacyclic carbon skeleton through a stereoselective intramolecular Diels-Alder reaction, followed by a radical cyclization. Subsequently, a meticulously designed sequence of redox manipulations was optimized to achieve the de novo synthesis of this highly oxidized Veratrum alkaloid.
Collapse
Affiliation(s)
- Yinliang Guo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jia-Tian Lu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Runting Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yang Jiao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
9
|
Chen W, Ma Y, He W, Wu Y, Huang Y, Zhang Y, Tian H, Wei K, Yang X, Zhang H. Structure units oriented approach towards collective synthesis of sarpagine-ajmaline-koumine type alkaloids. Nat Commun 2022; 13:908. [PMID: 35177620 PMCID: PMC8854706 DOI: 10.1038/s41467-022-28535-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sarpagine-Ajmaline-Koumine type monoterpenoid indole alkaloids represent a fascinating class of natural products with polycyclic and cage-like structures, interesting biological activities, and related biosynthetic origins. Herein we report a unified approach towards the asymmetric synthesis of these three types of alkaloids, leading to a collective synthesis of 14 natural alkaloids. Among them, akuammidine, 19-Z-akuammidine, vincamedine, vincarine, quebrachidine, vincamajine, alstiphylianine J, and dihydrokoumine are accomplished for the first time. Features of our synthesis are a new Mannich-type cyclization to construct the key indole-fused azabicyclo[3.3.1]nonane common intermediate, a SmI2 mediated coupling to fuse the aza-bridged E-ring, stereoselective olefinations to install either the 19-E or 19-Z terminal alkenes presented in the natural alkaloids, and an efficient iodo-induced cyclization to establish the two vicinal all-carbon quaternary centers in the Koumine-type alkaloids.
Collapse
Affiliation(s)
- Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yonghui Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Wenyan He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yinxia Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yuancheng Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yipeng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Hongchang Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Kai Wei
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
10
|
Xie TZ, Luo L, Zhao YL, Li H, Xiang ML, Qin XJ, He YJ, Zhu YY, Dai Z, Wang ZJ, Wei X, Liu YP, Zhao LX, Lai R, Luo XD. Steroidal Alkaloids with a Potent Analgesic Effect Based on N-type Calcium Channel Inhibition. Org Lett 2022; 24:467-471. [PMID: 34477387 DOI: 10.1021/acs.orglett.1c02853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Two distinctive alkaloids with 6/6/6/5/6/6 fused rings, in which a previously unidentified linkage of C-12/23 generates a rigid skeleton, resulting in a new subtype of steroidal alkaloid, were isolated from Veratrum grandiflorum. Compounds 1 and 2 showed potent analgesic effects in vivo, superior to the well-known analgesic, pethidine (Dolantin), likely by inhibiting CaV2.2 voltage-gated calcium channels.
Collapse
Affiliation(s)
- Tian-Zhen Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lei Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Hao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Mei-Ling Xiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
11
|
Inomata K, Akahane Y. Asymmetric Intramolecular Aldol Reactions Mediated by Chiral Triamines Bearing a Pyrrolidine Scaffold to Provide a Wieland–Miescher Ketone. HETEROCYCLES 2022. [DOI: 10.3987/com-22-s(r)12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Chang YP, Ma X, Shao H, Zhao YM. Total Syntheses of Galanthamine and Lycoramine via a Palladium-Catalyzed Cascade Cyclization and Late-Stage Reorganization of the Cyclized Skeleton. Org Lett 2021; 23:9659-9663. [PMID: 34874174 DOI: 10.1021/acs.orglett.1c03943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we report the highly efficient total syntheses of galanthamine and lycoramine from a common tetracyclic intermediate. This concise synthetic route features a two-phase strategy, which includes the early-stage rapid construction of a tetracyclic skeleton followed by the late-stage selective reorganization of the tetracyclic skeleton. Key to the success of this strategy are a palladium-catalyzed carbonylative cascade annulation, a DDQ-mediated intramolecular regioselective oxidative lactamization, as well as a BF3·Et2O-promoted reorganization of the bridged tetracyclic skeleton.
Collapse
Affiliation(s)
- Ya-Ping Chang
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Xia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Hui Shao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China
| | - Yu-Ming Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry & School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China.,CAS Key Lab of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| |
Collapse
|
13
|
Abstract
Chemical transformations that rapidly and efficiently construct a high level of molecular complexity in a single step are perhaps the most valuable in total synthesis. Among such transformations is the transition metal catalyzed [2 + 2 + 2] cycloisomerization reaction, which forges three new C-C bonds and one or more rings in a single synthetic operation. We report here a strategy that leverages this transformation to open de novo access to the Veratrum family of alkaloids. The highly convergent approach described herein includes (i) the enantioselective synthesis of a diyne fragment containing the steroidal A/B rings, (ii) the asymmetric synthesis of a propargyl-substituted piperidinone (F ring) unit, (iii) the high-yielding union of the above fragments, and (iv) the intramolecular [2 + 2 + 2] cycloisomerization reaction of the resulting carbon framework to construct in a single step the remaining three rings (C/D/E) of the hexacyclic cevanine skeleton. Efficient late-stage maneuvers culminated in the first total synthesis of heilonine (1), achieved in 21 steps starting from ethyl vinyl ketone.
Collapse
Affiliation(s)
- Kyle J. Cassaidy
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| | - Viresh H. Rawal
- Department of Chemistry, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Halling PJ. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein J Org Chem 2021; 17:873-884. [PMID: 33968260 PMCID: PMC8077619 DOI: 10.3762/bjoc.17.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The kinetics of enzymatic desymmetrisation were analysed for the most common kinetic mechanisms: ternary complex ordered (prochiral ketone reduction); ping-pong second (ketone amination, diol esterification, desymmetrisation in the second half reaction); ping-pong first (diol ester hydrolysis) and ping-pong both (prochiral diacids). For plausible values of enzyme kinetic parameters, the product enantiomeric excess (ee) can decline substantially as the reaction proceeds to high conversion. For example, an ee of 0.95 at the start of the reaction can decline to less than 0.5 at 95% of equilibrium conversion, but for different enzyme properties it will remain almost unchanged. For most mechanisms a single function of multiple enzyme rate constants (which can be termed ee decline parameter, eeDP) accounts for the major effect on the tendency for the ee to decline. For some mechanisms, the concentrations or ratios of the starting materials have an important influence on the fall in ee. For the application of enzymatic desymmetrisation it is important to study if and how the product ee declines at high conversion.
Collapse
Affiliation(s)
- Peter J Halling
- WestCHEM, Dept Pure & Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, UK
| |
Collapse
|
15
|
Horwitz MA, Robins JG, Johnson JS. De Novo Synthesis of the DEF-Ring Stereotriad Core of the Veratrum Alkaloids. J Org Chem 2020; 85:6808-6814. [PMID: 32352768 PMCID: PMC7246867 DOI: 10.1021/acs.joc.0c00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of the stereotriad core in the eastern portion of the Veratrum alkaloids jervine (1), cyclopamine (2), and veratramine (3) is reported. Starting from a known β-methyltyrosine derivative (8), the route utilizes a diastereoselective substrate-controlled 1,2-reduction to establish the stereochemistry of the vicinal amino alcohol motif embedded within the targets. Oxidative dearomatization is demonstrated to be a viable approach for the synthesis of the spirocyclic DE ring junction found in jervine and cyclopamine.
Collapse
Affiliation(s)
- Matthew A Horwitz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jacob G Robins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|