1
|
Li X, Yang M, Wang S, Yuan X, Yin J, Shi D, Ma S, Zhang Q, Xiong T. Radical Arylboration of Unactivated Alkenes via Visible-Light Catalysis. Org Lett 2025; 27:4986-4991. [PMID: 40333359 DOI: 10.1021/acs.orglett.5c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
A photoinduced radical arylboration of unactivated alkenes with B2pin2 and aryl nitriles was developed, providing a mild and efficient approach to access useful β-aryl boronates in the absence of a transition-metal catalyst. This reaction undergoes a boron radical addition to alkene and a subsequent radical-radical coupling process. This approach showcases good functional group compatibility and provides a promising and complementary strategy to boron chemistry and traditional transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Xiaoyu Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Menglin Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shucheng Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Mao J, Chen M, Zhong Y, Song RJ. Recent developments in difunctionalization of unsaturated hydrocarbons with organosilicon reagents. Org Biomol Chem 2024; 23:59-77. [PMID: 39535024 DOI: 10.1039/d4ob01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Organosilicon compounds have attracted considerable attention because of their special biological activities. Direct difunctionalization of unsaturated hydrocarbons with organosilicon reagents for the efficient construction of synthetically valuable silicon-functionalized compounds are featured with a high step and atom economy, which could form carbon-silicon/carbon-carbon bonds or carbon-silicon/carbon-hetero bonds in one step. This review summarizes the recent advances on this topic based on different unsaturated hydrocarbons along with typical examples and mechanisms.
Collapse
Affiliation(s)
- Jiawei Mao
- College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China.
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ming Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yao Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Yang H, Pan Y, Tian Y, Yu K, Bai Y, Jiang Y, Zhang H, Deng G, Yang X. Intramolecular cyclization of N-aryl amides for the synthesis of 3-amino oxindoles. Chem Commun (Camb) 2024; 60:14125-14128. [PMID: 39530152 DOI: 10.1039/d4cc05259e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A mild and efficient strategy to synthesize pharmaceutically important 3-amino oxindoles from readily available N-aryl amides has been developed. This unique reaction proceeds via the intramolecular cyclization of 2-azaallyl anions with N-aryl amides to afford 3-amino substituted oxindoles. This novel method avoids the direct usage of transition metal catalysts and additional oxidants. Furthermore, the anti-pulmonary fibrosis activity evaluation showed that 3-amino oxindole 2f significantly inhibited collagen deposition, which can ameliorate pulmonary fibrosis by reducing excessive extracellular matrix (ECM) deposition.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yu Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yijing Tian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Kaili Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yifeng Bai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China.
| |
Collapse
|
4
|
Suzuki H, Sekino K, Kondo S, Minamikawa R, Matsuda T. Modular synthesis of 3,3-disubstituted oxindoles from nitrones and acrylic acids. Org Biomol Chem 2024; 22:6282-6287. [PMID: 39034769 DOI: 10.1039/d4ob00964a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We developed a modular synthesis for 3,3-disubstituted oxindoles, utilising readily accessible nitrones and acrylic acids. This approach facilitates the preparation of a diverse array of oxindoles through the variation of the starting materials. We demonstrated the applicability of this method through a gram-scale reaction and a synthesis of esermethole.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan.
| | - Kaisei Sekino
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Sora Kondo
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryo Minamikawa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
5
|
Sun F, Zheng Y, Wu M, Ji H, Jiang Z, Liu C, Wu XX. Three-component cascade carbopalladation/Heck cyclization/borylation: facile access to boryl-functionalized indenes. Chem Commun (Camb) 2024; 60:8075-8078. [PMID: 38990065 DOI: 10.1039/d4cc02591a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
A mild Pd-catalyzed three-component cascade cyclization functionalization of o-iodostyrenes, internal alkynes and boron reagents is presented. The transformation is driven by a controlled reaction sequence of intermolecular carbopalladation, intramolecular Heck-type cyclization, and a borylation process to give versatile boryl-functionalized indene skeletons in a selective fashion. Significantly, (Bpin)2, (Bneop)2 and CH2(Bpin)2 as boron sources are all tolerated. Additionally, the synthetic utility of this approach is demonstrated by gram-scale synthesis and synthetic transformations.
Collapse
Affiliation(s)
- Fei Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Yiyi Zheng
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Mingxia Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Hongsen Ji
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Zhongyao Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Chenglin Liu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| |
Collapse
|
6
|
Mondal PP, Chungath AA, Krishnan M, Das S, Mandodi A, Sahoo B. Synthesis of Unsymmetrical 3,3'-Dialkyloxindole Boronic Esters from 3-Alkylidene-2-oxindoles Enabled by Copper Catalysis. J Org Chem 2024; 89:10403-10408. [PMID: 38970159 DOI: 10.1021/acs.joc.4c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
We describe a 1,2-alkylboration of 3-alkylidene-2-oxindoles with a diboron reagent and alkyl bromides and iodides enabled by copper/bisphosphine catalysis. This scalable alkylboration method provides facile access to 3,3'-dialkyloxindole boronic esters featuring an all-carbon quaternary stereocenter and an increased F(sp3) fraction. In addition to good functional group tolerance and prolific utilization of drug/pesticide-derived alkyl iodides, the conversion of the C-B bond to a C-C/C-X bond offers further opportunities for structural variation of 3,3'-dialkyloxindoles.
Collapse
Affiliation(s)
- Pinku Prasad Mondal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Alvin Antony Chungath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Malavika Krishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Subham Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Aarya Mandodi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
7
|
Bhanja R, Kanti Bera S, Mal P. Sustainable Synthesis through Catalyst-Free Photoinduced Cascaded Bond Formation. Chem Asian J 2024; 19:e202400279. [PMID: 38717944 DOI: 10.1002/asia.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/12/2024]
Abstract
The beginning of photochemical reactions revolutionized synthetic chemistry through sustainable practices. This review explores cutting-edge developments in leveraging light-induced processes for generating cascaded C-C and C-hetero bonds without catalysts. Significantly, catalyst-free photoinduced methodologies have garnered considerable attention, especially in the creation of varied heterocyclic frameworks for drug design and the synthesis of natural products. The article delves into underlying mechanisms, addresses limitations, and evaluates various methodologies, emphasizing the potential of photocatalyst and transition metal-free photochemical reactions to enhance sustainability. Divided into two sections, it covers recent strides in C-C and C-heteroatom and multiple C-heteroatom bond formation reactions.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| |
Collapse
|
8
|
Xie JQ, Wang BX, Liang RX, Jia YX. Copper-catalyzed asymmetric 1,2-arylboration of enamines: access to chiral borate-containing 3,3'-disubstituted isoindolinones. Org Biomol Chem 2024. [PMID: 39005048 DOI: 10.1039/d4ob00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.
Collapse
Affiliation(s)
- Jia-Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bing-Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
9
|
Jia Y, Wang H, Guo J, Zhang F, Zhang L, Li X, Zhao Y, Bao X, Liu Q, Li X, Liu H. EMM-Promoted Pd-Catalyzed Solid State Intramolecular Heck-Type Cyclization/Boronation and Suzuki Couplings: Access to Functionalized Indolines. J Org Chem 2024; 89:6704-6713. [PMID: 38709904 DOI: 10.1021/acs.joc.3c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
EMM (electromagnetic mill)-promoted Pd-catalyzed solid state intramolecular Heck-type cyclization/boronation and Suzuki couplings are reported. Compared to previous mechanochemistry that constructed one chemical bond through a cross-coupling reaction, this strategy realizes cascade transformation along with multiple chemical bond formation. This conversion does not require organic solvents or additional heating, and it shows a good substrate scope and high functional group tolerance.
Collapse
Affiliation(s)
- Yuwei Jia
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Jintao Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yan Zhao
- Clinical Laboratory of Zibo Central Hospital, Zibo 255020, People's Republic of China
| | - Xingliang Bao
- Zibo New Materials Trading Center Zhangdian District, Zibo Tengyu Chemical Engineering Company, Ltd., Zibo 255020, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaowei Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|
10
|
Zhu XW, Ye H, Pan YY, Wu Y, Wu XX. Pd-Catalyzed Cascade Cyclization/Thiocarbonylation with Thioformates: Synthesis of Thioester-Functionalized Oxindoles. J Org Chem 2024; 89:3471-3480. [PMID: 38350101 DOI: 10.1021/acs.joc.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
A Pd-catalyzed thiocarbonylative cyclization of N-(o-iodoaryl)acrylamides with easily accessible thioformates has been developed. The reaction has a wide substrate scope with good yields and represents a powerful route to the synthesis of thioester-functionalized oxindoles. Both S-aryl and alkyl thioformates as the thioester sources were well tolerated. The active Pd-CO intermediate may play an important role in the transformation process.
Collapse
Affiliation(s)
- Xi-Wei Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yi-Yun Pan
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
11
|
Pan YY, Zhu XW, Shi L, Jiang G, Wu XX. Palladium-Catalyzed Heck Cyclization with P(O)H Compounds to Construct Phosphinonyl-Azaindoline and -Azaoxindole Derivatives. J Org Chem 2023; 88:9843-9852. [PMID: 37433020 DOI: 10.1021/acs.joc.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
We report herein a concise method for the construction of phosphinonyl-azaindoline and -azaoxindole derivatives via a palladium-catalyzed cascade cyclization with P(O)H compounds. Various H-phosphonates, H-phosphinates, and aromatic secondary phosphine oxides are all tolerated under the reaction conditions. Furthermore, the phosphinonyl-azaindoline isomer families such as 7-, 5-, and 4-azaindolines could be synthesized in moderate to good yields.
Collapse
Affiliation(s)
- Yi-Yun Pan
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xi-Wei Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Lei Shi
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Guomin Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
12
|
Ye H, Wu L, Zhang M, Jiang G, Dai H, Wu XX. Palladium-catalyzed Heck cyclization/carbonylation with formates: synthesis of azaindoline-3-acetates and furoazaindolines. Chem Commun (Camb) 2022; 58:6825-6828. [PMID: 35615964 DOI: 10.1039/d2cc02152h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report herein a palladium-catalyzed domino cyclization/carbonylation to access ester-functionalized azaindolines, applying formates as a convenient carbonyl source. All four azaindoline isomers were constructed, exhibiting good functional group compatibility. On this basis, modifying the starting tether on the aminopyridine led to furoazaindolines via an intramolecular reductive cyclization after the palladium-catalyzed process.
Collapse
Affiliation(s)
- Hao Ye
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Linhui Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Minrui Zhang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Guomin Jiang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Hong Dai
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Xin-Xing Wu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| |
Collapse
|
13
|
Wang DC, Wu PP, Du PY, Qu GR, Guo HM. Highly Diastereoselective Synthesis of Oxindoles Containing Vicinal Quaternary and Tertiary Stereocenters by a Domino Heck/Decarboxylative Alkynylation Sequence. Org Lett 2022; 24:4212-4217. [PMID: 35666666 DOI: 10.1021/acs.orglett.2c01517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed domino Heck/decarboxylative alkynylation reaction of trisubstituted alkenes or enamines is reported. For two different types of substrates, the current domino reaction employing different solvents and bases led to 3,3-disubstituted oxindoles and hydropyrimidinyl spirooxindoles containing vicinal quaternary and tertiary stereocenters in moderate to good yields, respectively. The general applicability of this method was shown by gram-scale syntheses and diverse transformations of the reaction products. The enantioselective version for this domino process was also studied.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pei-Yu Du
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Zhou Y, Xiong T, Zhou LY, Li HY, Xiao YC, Chen FE. Diastereo- and Enantioselective Synthesis of Borylated 3-Hydroxyoxindoles by Addition of gem-Diborylalkanes to Isatins. Org Lett 2022; 24:791-796. [PMID: 35005977 DOI: 10.1021/acs.orglett.1c04380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalytic asymmetric synthesis of borylated 3-hydroxyoxindoles by addition of gem-diborylalkanes to isatins is disclosed. Chiral 3-hydroxyoxindoles bearing two contiguous stereogenic centers were produced in up to >20:1 dr and 99% ee. The synthetic utility of the corresponding products is presented through several transformations of the boryl moiety. This report provides an efficient strategy to incorporate a boryl functional group toward the synthesis of 3-hydroxyoxindoles.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tong Xiong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li-Yan Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hong-Yan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Golla S, Anugu N, Jalagam S, Kokatla HP. Rongalite-induced transition-metal and hydride-free reductive aldol reaction: a rapid access to 3,3'-disubstituted oxindoles and its mechanistic studies. Org Biomol Chem 2022; 20:808-816. [PMID: 34994750 DOI: 10.1039/d1ob02284a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A transition-metal and hydride-free reductive aldol reaction has been developed for the synthesis of biologically active 3,3'-disubstituted oxindoles from isatin derivatives using rongalite. In this protocol, rongalite plays a dual role as a hydride-free reducing agent and a C1 unit donor. This transition metal-free method enables the synthesis of a wide range of 3-hydroxy-3-hydroxymethyloxindoles and 3-amino-3-hydroxymethyloxindoles with 79-96% yields. One-pot reductive hydroxymethylation, inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions and short reaction time are some of the key features of this synthetic method. This protocol is also applicable to gram scale synthesis.
Collapse
Affiliation(s)
- Sivaparwathi Golla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Naveenkumar Anugu
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Swathi Jalagam
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| |
Collapse
|
16
|
Chen M, Xu XX, Wang X, Ren ZH, Guan ZH. endo-5-Norbornene-2,3-dimethanol-promoted asymmetric Heck/Suzuki cascade reaction of N-(2-bromophenyl)acrylamides. Org Chem Front 2022. [DOI: 10.1039/d2qo00998f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An endo-5-norbornene-2,3-dimethanol-promoted highly enantioselective palladium-catalyzed Heck/Suzuki cascade reaction of N-(2-bromophenyl)acrylamides has been developed.
Collapse
Affiliation(s)
- Ming Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Xing-Xing Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Xucai Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory for Carbon Neutral Technology, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
17
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Mao G, Meng C, Cheng F, Wu W, Gao YY, Li GW, Liu L. Palladium-Catalyzed Sequential Heck Coupling/C-C Bond Activation Approach to Oxindoles with All-Carbon-Quaternary Centers. Org Biomol Chem 2022; 20:1642-1646. [DOI: 10.1039/d1ob02440j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic construction of oxindoles bearing all-carbon-quaternary centers draws wide attentions from synthetic community. Herein, we report a Palladium-catalyzed sequential Heck coupling/C-C bond activation of aryl halide-tethered alkenes with benzocyclobutenols affording...
Collapse
|
19
|
Cheng C, Xiang JN, Zhu YP, Peng ZH, Li JH. Nickel-Catalyzed Arylcarbamoylation of Alkenes of N-( o-Iodoaryl)acrylamides with Nitroarenes via Reductive Aminocarbonylation: Facile Synthesis of Carbamoyl-Substituted Oxindoles. Org Lett 2021; 23:9543-9547. [PMID: 34860537 DOI: 10.1021/acs.orglett.1c03762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nickel-catalyzed arylcarbamoylation reactions of alkenes of N-(o-haloaryl)acrylamides with CO and nitroarenes via reductive aminocarbonylation to produce carbamoyl-substituted oxindoles with an all-carbon quaternary stereogenic center are presented. Starting with N-(o-haloaryl)acrylamides, simple CO, and inexpensive nitroarenes and using a Ni catalyst, a dinitrogen-based ligand, a Zn reductant, a TMSCl additive, and a base system, this protocol enables the synthesis of various carbamoyl-substituted oxindoles and allows the efficient late-stage derivatization of valuable molecules.
Collapse
Affiliation(s)
- Chaozhihui Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jian-Nan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Zhi-Hong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.,Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
20
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
21
|
Chen J, Li JH, Zhu YP, Wang QA. Copper-catalyzed enantioselective arylboronation of activated alkenes leading to chiral 3,3′-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00186h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper-catalyzed asymmetric arylboronation of activated alkenes for producing highly enantioenriched 3-boroalkyl oxindoles and incorporating pharmacophores is depicted.
Collapse
Affiliation(s)
- Jiangfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- School of Pharmacy
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qiu-An Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
22
|
Syntheses of 3,3-Disubstituted Dihydrobenzofurans, Indolines, Indolinones and Isochromanes by Palladium-Catalyzed Tandem Reaction Using Pd(PPh3)2Cl2/(±)-BINAP as a Catalytic System. Catalysts 2020. [DOI: 10.3390/catal10091084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A general procedure for the tandem arylation reaction of arylbromide with heteroaryl compounds was developed by using Pd(PPh3)2Cl2/(±)-BINAP (1,1′-Binaphthalene-2,2′-diylbis (diphenylphosphane)) as catalytic system. Both sulphur- and oxygen-containing heterocycles were also employed as an efficient reagent for arylation, which gave moderate to excellent yields with moderate to good regioselectivities (5:1 to > 20:1 ir (isomer ratio)). Except for dihydrobenzofurans, indolines and indolinones, this type of tandem reaction was also expanded to synthesize isochromanes. The synthesized new compounds were well characterized through different spectroscopic techniques, such as 1H and 13C NMR (nuclear magnetic resonance), and mass spectral analysis.
Collapse
|
23
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
24
|
Zhang Y, Wu XF. Copper-catalyzed borylative cyclization of γ,δ-unsaturated aromatic oxime esters to (borylmethyl)pyrrolidines. Org Chem Front 2020. [DOI: 10.1039/d0qo01064b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient copper-catalyzed aminoborylation of γ,δ-unsaturated aromatic oxime esters with bis(pinacolato)diboron has been developed. A variety of α-(borylmethyl)pyrrolidine derivatives were constructed in high yields under mild conditions.
Collapse
Affiliation(s)
- Youcan Zhang
- Leibniz-Institut für Katalyse e.V. (LIKAT) an der Universität Rostock
- 18059 Rostock
- Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. (LIKAT) an der Universität Rostock
- 18059 Rostock
- Germany
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
| |
Collapse
|
25
|
Kidonakis M, Fragkiadakis M, Stratakis M. β-Borylation of conjugated carbonyl compounds with silylborane or bis(pinacolato)diboron catalyzed by Au nanoparticles. Org Biomol Chem 2020; 18:8921-8927. [DOI: 10.1039/d0ob01806f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
β-Borylation occurs in the Au/TiO2-catalysed reaction between the silylborane Me2PhSiBpin and conjugated carbonyl compounds, in contrast to the so far known analogous reaction catalysed by other metals, where β-silylation occurs instead.
Collapse
|
26
|
Wu XX, Ye H, Dai H, Yang B, Wang Y, Chen S, Hu L. Palladium-catalyzed domino Heck cyclization/ring opening of sulfolenes/desulfitative coupling: regio- and stereoselective synthesis of alkylated conjugated dienes. Org Chem Front 2020. [DOI: 10.1039/d0qo00615g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient cascade dienylation provides a range of alkylated conjugated diene compounds with the Z-configuration by introducing the C4 unit directly.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hao Ye
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Bing Yang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Yang Wang
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Lanping Hu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|