1
|
Rezaeifard A, Doraghi F, Akbari F, Bari B, Kianmehr E, Ramazani A, Khoobi M, Foroumadi A. Organic Peroxides in Transition-Metal-Free Cyclization and Coupling Reactions (C-C) via Oxidative Transformation. ACS OMEGA 2025; 10:15852-15907. [PMID: 40321530 PMCID: PMC12044487 DOI: 10.1021/acsomega.4c11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025]
Abstract
Transition-metal-free transformations are recognized as green and sustainable methods for constructing carbon-carbon bonds in organic synthesis. This review describes the application of six organic peroxides, including tert-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP), tert-butyl peroxybenzoate (TBPB), benzoyl peroxide (BPO), dialauroyl peroxide (DLP), and diguyl peroxide (DCP), in C-C bond construction, highlighting selected examples and mechanisms of challenging transformations. Each section concludes with a detailed overview of suitable reagents for various coupling reactions and strengths and weaknesses of the reported works. This work aims to inspire further innovations in transition-metal-free oxidative transformations, promoting sustainable and eco-friendly chemical processes and paving the way for new peroxide-based organic synthesis methods.
Collapse
Affiliation(s)
- Amin Rezaeifard
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Fatemeh Doraghi
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Fatemeh Akbari
- Department
of Chemistry, Uppsala University, Uppsala 751-05, Sweden
| | - Bahareh Bari
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ebrahim Kianmehr
- School
of Chemistry, College of Science, University
of Tehran, Tehran 14174-66191, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Mehdi Khoobi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Radiopharmacy, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 11141-33314, Iran
| | - Alireza Foroumadi
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 11141-33314, Iran
| |
Collapse
|
2
|
Tan S, Dorokhov VS, White LV, Zard SZ. Synthesis of 4-Alkyl-2-chloro Imidazoles Using Intermolecular Radical Additions. Org Lett 2024; 26:5989-5994. [PMID: 38975858 DOI: 10.1021/acs.orglett.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Here, we report an intermolecular radical addition-based reaction sequence that permits preparation of functionalized imidazoles via a 5-step/3-pot procedure. In contrast to traditional, transition-metal mediated protocols, which generally provide access to 2-substituted imidazoles, the strategy described here allows incorporation of a structurally diverse range of complex alkyl side chains at the 4-position. This work demonstrates that intermolecular free-radical addition reactions are a powerful alternative to traditional methods used to synthesize medicinally important heterocyclic frameworks.
Collapse
Affiliation(s)
- Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Valentin S Dorokhov
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS, École Polytechnique, Palaiseau 91128, France
| |
Collapse
|
3
|
Quiclet-Sire B, Zard SZ. Some Aspects of α-(Acyloxy)alkyl Radicals in Organic Synthesis. Molecules 2023; 28:7561. [PMID: 38005282 PMCID: PMC10673534 DOI: 10.3390/molecules28227561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The preparation and use of α-(acyloxy)alkyl xanthates to generate and capture α-(acyloxy)alkyl radicals is briefly reviewed. Their inter- and intramolecular additions to both activated and unactivated, electronically unbiased, alkenes, and to (hetero)aromatic rings, as well as their radical allylation and vinylation reactions are described. Application to the total synthesis of two 4-hydroxytetralone natural products is also presented.
Collapse
Affiliation(s)
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au C.N.R.S., UMR 7652, Ecole Polytechnique, 91128 Palaiseau, France;
| |
Collapse
|
4
|
Wang S, Yang L, Liang F, Zhong Y, Liu X, Wang Q, Zhu D. Synthetic exploration of electrophilic xanthylation via powerful N-xanthylphthalimides. Chem Sci 2023; 14:9197-9206. [PMID: 37655020 PMCID: PMC10466340 DOI: 10.1039/d3sc03194b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
Organic xanthates are broadly applied as synthetic intermediates and bioactive molecules in synthetic chemistry. Electrophilic xanthylation represents a promising approach but has rarely been explored mainly due to the lack of powerful electrophilic reagents. Herein, synthetic exploration of electrophilic xanthylation via powerful N-xanthylphthalimides was investigated. This strategy might provide a new avenue to less-concerned but meaningful electrophilic xanthylation in organic synthesis. With the help of these powerful reagents, electrophilic xanthylation of a wide range of substrates including aryl/alkenyl boronic acids, β-keto esters, 2-oxindole, and alkyl amines, as well as previously inaccessible phenols (first report) was achieved under mild reaction conditions. Notably, this simple electrophilic xanthylation of alkyl amine substrates will occur in the desulfuration reaction, consistent with the previously reported methods. Similarly, xanthamide and thioxanthate groups could also be transformed into desired nucleophiles via this electrophilic reagent strategy. The broad substrate scope, excellent functional group compatibility and late-stage functionalization of bioactive or functional molecules made them very attractive as general reagents which will allow rapid incorporation of SC(S)R (R = OEt, Oalkyl, NEt2 and SEt) into the target molecules.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Liuqing Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Fangcan Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Yu Zhong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University Xi'an 710069 China
| | - Dianhu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| |
Collapse
|
5
|
Zard SZ. Sulfur chemistry in action. New perspectives for organic synthesis. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2173755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Samir Z. Zard
- Laboratoire de Synthèse Organique associé au C. N. R. S., UMR 7652, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
You Q, Liao M, Feng H, Huang J. Microwave-assisted decarboxylative reactions: advanced strategies for sustainable organic synthesis. Org Biomol Chem 2022; 20:8569-8583. [DOI: 10.1039/d2ob01677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent advances in the microwave-assisted decarboxylative reactions of carboxylic acids and their derivatives, including transition-metal-catalyzed and metal-free approaches, are summarized.
Collapse
Affiliation(s)
- Qingqing You
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Mingjie Liao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 201203, China
| |
Collapse
|
7
|
Aguilar Troyano FJ, Merkens K, Anwar K, Gómez‐Suárez A. Radical-Based Synthesis and Modification of Amino Acids. Angew Chem Int Ed Engl 2021; 60:1098-1115. [PMID: 32841470 PMCID: PMC7820943 DOI: 10.1002/anie.202010157] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Amino acids (AAs) are key structural motifs with widespread applications in organic synthesis, biochemistry, and material sciences. Recently, with the development of milder and more versatile radical-based procedures, the use of strategies relying on radical chemistry for the synthesis and modification of AAs has gained increased attention, as they allow rapid access to libraries of novel unnatural AAs containing a wide range of structural motifs. In this Minireview, we provide a broad overview of the advancements made in this field during the last decade, focusing on methods for the de novo synthesis of α-, β-, and γ-AAs, as well as for the selective derivatisation of canonical and non-canonical α-AAs.
Collapse
Affiliation(s)
| | - Kay Merkens
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Khadijah Anwar
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| | - Adrián Gómez‐Suárez
- Organic ChemistryBergische Universität WuppertalGaussstrasse 2042119WuppertalGermany
| |
Collapse
|
8
|
|
9
|
|