1
|
Huang J, Pei C, Yang H, Wu B, Tang W. Enantioselective Palladium-Catalyzed α-Arylation of Acyclic Esters. Angew Chem Int Ed Engl 2025:e202505458. [PMID: 40322831 DOI: 10.1002/anie.202505458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/17/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
A Pd-catalyzed enantioselective α-arylation of α,α-disubstituted esters with aryl bromides is established for the first time by employing P-chiral monophosphorus ligand 3-Pent-BIDIME as a chiral ligand, leading to a series of enantioenriched α,α-diaryl esters possessing quaternary carbon stereocenters in moderate to good yields and high enantioselectivities. The method features a broad substrate scope, mild conditions, excellent functional group compatibility, and low Pd loadings (as low as 1 mol%). The synthetic power of this protocol is exemplified by the efficient preparation of a chiral α,α-diaryl substituted γ-lactone and asymmetric synthesis of (R)-amolanone. DFT calculation revealed an NaBr-bridged downstream transmetallation and the importance of noncovalent interaction in controlling the enantioselectivity.
Collapse
Affiliation(s)
- Jianxun Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Chao Pei
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu, 215537, China
| | - He Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
| | - Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu, 215537, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
2
|
Du YM, Chen XY, Li Y, Koh MJ, Shu W. Rapid assembly of enantioenriched α-arylated ketones via Ni-catalyzed asymmetric cross-hydrocarbonylation enabled by alkene sorting. Nat Commun 2025; 16:4163. [PMID: 40325002 PMCID: PMC12052995 DOI: 10.1038/s41467-025-57967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025] Open
Abstract
Enantioenriched α-arylated dialkyl ketones with acidic proton are ubiquitous subunits in valuable target organic molecules and serve as versatile synthetic precursors for other value-added chiral blocks. Herein, a distinct synthetic strategy of enantioenriched α-arylated dialkyl ketones enabled by nickel-catalyzed iterative cross-hydrocarbonylation of two alkenes has been developed, representing a reaction mode for the direct synthesis of asymmetric α-arylated dialkyl ketones. One aliphatic alkene and one styrene are creatively used as surrogates of two different alkyl precursors. Two different alkenes are sewed together by a "carbonyl glue" with exclusive alkene sorting. This straightforward and gas-free protocol transforms a diverse array of styrene and unactivated alkenes into highly valuable α-arylated dialkyl ketones with high levels of enantioselectivity, allowing for the construction of enantioenriched unsymmetric dialkyl ketones from only alkenes. This process is also applicable to late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Yi-Ming Du
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xiao-Yi Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yulong Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, PR China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Wei Shu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
3
|
Fliegel L, Schmidtmann M, Christoffers J. Synthesis of Optically Active Spirocycles by a Sequence of Decarboxylative Asymmetric Allylic Alkylation and Heck Reaction. Org Lett 2024; 26:10600-10603. [PMID: 39630040 DOI: 10.1021/acs.orglett.4c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Optically active spirocycles were prepared in a sequence of two palladium-catalyzed reactions. In the first step, racemic α-(ortho-iodophenyl)-β-oxo allyl esters were submitted to the palladium-catalyzed decarboxylative asymmetric allylic alkylation reaction, furnishing the α-allylated products with a quaternary stereocenter with good yields and enantioselectivities. Subsequently, these intermediate products were converted in a Heck reaction yielding the spirocyclic structures as a mixture of exo- and endo-cyclic regioisomers. These mixtures could be isomerized with an acidic ion-exchange resin to give the endo-products with quantitative yield and selectivity. The target structure of this study could be further submitted to Friedel-Crafts reactions with electron-rich aromatic compounds.
Collapse
Affiliation(s)
- Lukas Fliegel
- Institut für Chemie, Universität Oldenburg, D-26129 Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Universität Oldenburg, D-26129 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Universität Oldenburg, D-26129 Oldenburg, Germany
| |
Collapse
|
4
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
5
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Kadarauch M, Whalley DM, Phipps RJ. sSPhos: A General Ligand for Enantioselective Arylative Phenol Dearomatization via Electrostatically-Directed Palladium Catalysis. J Am Chem Soc 2023; 145:25553-25558. [PMID: 37972383 PMCID: PMC10690801 DOI: 10.1021/jacs.3c10663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Arylative phenol dearomatization affords complex, cyclohexanone-based scaffolds from simple starting materials, and asymmetric versions allow access to valuable enantioenriched structures. However, bespoke chiral ligands must typically be identified for each new scaffold variation. We have addressed this limitation by applying the concept of electrostatically-directed palladium catalysis whereby the chiral sulfonated ligand sSPhos engages in electrostatic interactions with a phenolate substrate via its associated alkali metal cation. This approach allows access to highly enantioenriched spirocyclohexadienones, a process originally reported by Buchwald and co-workers in a predominantly racemic manner. In addition, sSPhos is proficient at forming two other distinct scaffolds, which had previously required fundamentally different chiral ligands, as well as a novel oxygen-linked scaffold. We envisage that the broad generality displayed by sSPhos will facilitate the expansion of this important reaction type and highlight the potential of this unusual design principle, which harnesses attractive electrostatic interactions.
Collapse
Affiliation(s)
- Max Kadarauch
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - David M. Whalley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
7
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
8
|
Ma C, Sun Y, Yang J, Guo H, Zhang J. Catalytic Asymmetric Synthesis of Tröger's Base Analogues with Nitrogen Stereocenter. ACS CENTRAL SCIENCE 2023; 9:64-71. [PMID: 36712492 PMCID: PMC9881208 DOI: 10.1021/acscentsci.2c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger's base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control.
Collapse
Affiliation(s)
- Chun Ma
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yue Sun
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junfeng Yang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| | - Hao Guo
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Zhuhai
Fudan Innovation Institute, Zhuhai, 519000, P. R. China
| | - Junliang Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
9
|
Sun G, Liu H, Wang X, Zhang W, Miao W, Luo Q, Gao B, Hu J. Palladium-Catalyzed Defluorinative Coupling of Difluoroalkenes and Aryl Boronic Acids for Ketone Synthesis. Angew Chem Int Ed Engl 2023; 62:e202213646. [PMID: 36315428 DOI: 10.1002/anie.202213646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The transition-metal-catalyzed carbonylation reaction is a useful approach for ketone synthesis. However, it is often problematic to use exogenous carbonyl reagents, such as gaseous carbon monoxide. In this manuscript, we report a novel palladium-catalyzed coupling reaction of gem-difluoroalkenes and aryl boronic acids that yields bioactive indane-type ketones with an all-carbon α-quaternary center. Characterization and stoichiometric reactions of the key intermediates RCF2 PdII support a water-induced defluorination and cross-coupling cascade mechanism. The vinyl difluoromethylene motif serves as an in situ carbonyl precursor which is unprecedented in transition-metal-catalyzed coupling reactions. It is expected to raise broad research interest from the perspectives of ketone synthesis, fluoroalkene functionalization, and rational design of new synthetic protocols based on the unique reactivity of difluoroalkyl palladium(II) species.
Collapse
Affiliation(s)
- Guangwu Sun
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Herui Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Wenbo Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Wenjun Miao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qinyu Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Zhang W, Vadlakonda S, Wu M, Chintareddy V, Vogeti LN, Juarez L, Muppa S, Parker C, Kellogg-Yelder D, Williams J, Polach K, Chen X, Raman K, Babu Y, Kotian P. Discovery and Optimization of Orally Bioavailable and Potent Plasma Kallikrein Inhibitors Bearing a Quaternary Carbon. Bioorg Med Chem 2022; 73:117035. [DOI: 10.1016/j.bmc.2022.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
|
11
|
Cao T, Zhu L, Huang J, Yang Z. Palladium-Catalyzed Intramolecular Diarylation of 1,3-Diketone in Total Synthesis of (±)-Spiroaxillarone A. Org Lett 2022; 24:1491-1495. [DOI: 10.1021/acs.orglett.2c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tingting Cao
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Chongqing 200038, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
12
|
Gao Z, Guo Y. Enantioselective Phosphonation of Isoquinolines via Chiral Phosphoric Acid-Catalyzed Dearomatization. Chem Commun (Camb) 2022; 58:9393-9396. [DOI: 10.1039/d2cc02811e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and enantioselective phosphonation protocol for construction of chiral α-aminophosphates and α-aminodiarylphosphine oxides has been developed based on chiral phosphoric acid-catalyzed dearomatization of isoquinolines. A series of chiral 1,2-dihydroisoquinolines...
Collapse
|
13
|
Hu J, Ji K, Yan L, Yang S, Li Y, Wen W, Chen L, Wu X, Hu Y, Xie W. A concise synthesis of herbertenolide. Org Biomol Chem 2022; 20:2205-2208. [DOI: 10.1039/d2ob00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise synthesis of (±)-herbertenolide has been accomplished herein. The strategy relies on a H2O2-mediated oxidative ring contraction of all-substituted cyclic α-formyl ketones for the stereospecific construction of contiguous quaternary...
Collapse
|
14
|
Shao LD, Chen Y, Wang M, Xiao N, Zhang ZJ, Li D, Li RT. Palladium-Catalyzed Direct γ-C(sp3)-H Arylation of β-Alkoxy Cyclohexenones: Reaction Scope and Mechanistic Insights. Org Chem Front 2022. [DOI: 10.1039/d1qo01871j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct γ-C(sp3)-arylation of unactivated electron-rich enones is a long-standing challenge. Herein, we report a mild Pd-catalyzed method for direct γ-C(sp3)-arylation of various unactivated β-alkoxy cyclohexenones. The method is not only...
Collapse
|
15
|
Debnath S, Kumar AS, Chauhan S, Kumara Swamy KC. Divergent Reactivity of δ- and β'-Acetoxy Allenoates with 2-Sulfonamidoindoles via Phosphine Catalysis: Entry to Dihydro-α-carboline, α-Carboline, and Spiro-cyclopentene Motifs. J Org Chem 2021; 86:11583-11598. [PMID: 34343010 DOI: 10.1021/acs.joc.1c01137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The reactivity of 2-sulfonamidoindoles with acetoxy allenoates under phosphine catalysis depends on the disposition of the acetoxy (OAc) group on the allenoate. In the temperature-controlled [3 + 3] annulations, δ-acetoxy allenoates afforded dihydrocarboline and carboline scaffolds with carbon-nitrogen nucleophilic 2-sulfonamidoindoles, in which allenoate serves as a β-, γ-, and δ-carbon donor. At room temperature (25 °C), dihydro-α-carboline motifs were obtained exclusively through Michael addition, 1,4-proton shift, isomerization, 1,2-proton transfer, phosphine elimination, and aza-Michael addition. The higher temperature (80 °C) cascade protocol using Ph3P-Cs2CO3 combination involves addition-elimination, aza-Claisen rearrangement, tosyl migration, and aromatization as key steps to give α-carbolines containing tosyl functionality at the γ-carbon. In contrast, with β'-acetoxy allenoate, 2-sulfonamidoindole acts only as a carbo-nucleophile in (p-tolyl)3P-directed [4 + 1] spiro-annulation, leading to five-membered spiro-carbocyclic motifs essentially as single diastereomers (dr >20:1) via chemoselective carbo-annulation.
Collapse
Affiliation(s)
- Shubham Debnath
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - A Sanjeeva Kumar
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Sachin Chauhan
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
16
|
Wang M, Wang W, Li D, Wang WJ, Zhan R, Shao LD. α-C(sp 3)-H Arylation of Cyclic Carbonyl Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:379-404. [PMID: 34097248 PMCID: PMC8275813 DOI: 10.1007/s13659-021-00312-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
α-C(sp3)-H arylation is an important type of C-H functionalization. Various biologically significant natural products, chemical intermediates, and drugs have been effectively prepared via C-H functionalization. Cyclic carbonyl compounds comprise of cyclic ketones, enones, lactones, and lactams. The α-C(sp3)-H arylation of these compounds have been exhibited high efficiency in forming C(sp3)-C(sp2) bonds, played a crucial role in organic synthesis, and attracted majority of interests from organic and medicinal communities. This review focused on the most significant advances including methods, mechanism, and applications in total synthesis of natural products in the field of α-C(sp3)-H arylations of cyclic carbonyl compounds in recent years.
Collapse
Affiliation(s)
- Mei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wen-Jing Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, China.
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China.
| |
Collapse
|
17
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
18
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
19
|
Chen X, Lu Y, Guan Z, Gu L, Chen C, Zhu H, Luo Z, Zhang Y. Synthesis of Succinimides via Intramolecular Alder-Ene Reaction of 1,6-Enynes. Org Lett 2021; 23:3173-3178. [PMID: 33797270 DOI: 10.1021/acs.orglett.1c00888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel and convenient method has been developed for the facile synthesis of functionalized succinimide derivatives via intramolecular Alder-ene reaction of 1,6-enynes. This reaction features mild and metal-free reaction conditions, which offers a green and efficient entry to synthetically important succinimide scaffolds. Preliminary mechanistic studies suggest that a diradical intermediate might be involved in this transformation.
Collapse
Affiliation(s)
- Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuling Lu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
20
|
Wu T, Tang W. Construction of Bridged Polycyclic Skeletons via Transition-Metal Catalyzed Carbon-Carbon Bond-Forming Reactions. Chemistry 2021; 27:3944-3956. [PMID: 32918298 DOI: 10.1002/chem.202003863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal catalysis has become one of most important methods for constructing molecules with diverse architectures. Bridged polycyclic skeletons are often considered one of most challenging structures in organic synthesis. This Minireview summarizes the recent progress on synthesis of bridged polycyclic skeletons by transition-metal-catalyzed carbon-carbon bond-forming reaction. Four main ring-forming strategies including connection via olefin or carbonyl functionality, enolate intermediacy, C-H functionality, and aryl functionality are detailed and some effective methods are discussed with particular emphasis on reaction design and mechanism.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Materials Science Hangzhou Institute for, Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
21
|
Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Asymmetric synthesis of 3-benzyl and allyl isoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00589h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Pd-catalyzed enantioselective Heck/Suzuki reaction of 1,1-disubstituted enamides with aryl/vinyl boronic acids has been developed to access 3-benzyl/allyl substituted isoindolinones bearing a tetrasubstituted stereogenic carbon center.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yaxin Teng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|
22
|
Wu XX, Ye H, Li M, Qian J, Dai H, Shi Y. Selective synthesis of acylated caprolactam via sequential Michael addition/palladium-catalyzed alpha-arylation of ketones. Org Chem Front 2021. [DOI: 10.1039/d0qo01323d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A formal [6 + 1] annulation reaction provides an efficient route enabling rapid access to diverse caprolactams by the double C–C bond formation of the same site from methyl ketones.
Collapse
Affiliation(s)
- Xin-Xing Wu
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
- Nantong Key Lab of Intelligent and New Energy Materials
| | - Hao Ye
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Jianing Qian
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Hong Dai
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| | - Yujun Shi
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|
23
|
Li K, Nie M, Tang W. Synthesis of α-tertiary allylsilanes by palladium-catalyzed hydrosilylation of 1,1-disubstituted allenes. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|