1
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
2
|
Pu L. Regioselective Substitution of BINOL. Chem Rev 2024; 124:6643-6689. [PMID: 38723152 PMCID: PMC11117191 DOI: 10.1021/acs.chemrev.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
1,1'-Bi-2-naphthol (BINOL) has been extensively used as the chirality source in the fields of molecular recognition, asymmetric synthesis, and materials science. The direct electrophilic substitution at the aromatic rings of the optically active BINOL has been developed as one of the most convenient strategies to structurally modify BINOL for diverse applications. High regioselectivity has been achieved for the reaction of BINOL with electrophiles. Depending upon the reaction conditions and substitution patterns, various functional groups can be introduced to the specific positions, such as the 6-, 5-, 4-, and 3-positions, of BINOL. Ortho-lithiation at the 3-position directed by the functional groups at the 2-position of BINOL have been extensively used to prepare the 3- and 3,3'-substituted BINOLs. The use of transition metal-catalyzed C-H activation has also been explored to functionalize BINOL at the 3-, 4-, 5-, 6-, and 7-positions. These regioselective substitutions of BINOL have allowed the construction of tremendous amount of BINOL derivatives with fascinating structures and properties as reviewed in this article. Examples for the applications of the optically active BINOLs with varying substitutions in asymmetric catalysis, molecular recognition, chiral sensing and materials are also provided.
Collapse
Affiliation(s)
- Lin Pu
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
3
|
Liu H, Chi W, Lin ML, Dong L. Iridium( iii)-catalyzed two-fold C–H alkylation of BINOLs with allyl alcohols. Org Chem Front 2022. [DOI: 10.1039/d1qo01486b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ir(iii)-Catalyzed C–H alkylation of BINOL units has been well examined by using allyl alcohols as coupling partners.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Chi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Shibata T, Kojima M, Onoda S, Ito M. Enantioselective Cross-Coupling of Electron-Deficient Alkenes via Ir-Catalyzed Vinylic sp 2 C-H Alkylation. Org Lett 2021; 23:8158-8162. [PMID: 34633825 DOI: 10.1021/acs.orglett.1c02823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A chiral Ir-catalyzed reaction of α-aryl-α,β-unsaturated amides with β-substituted acrylates proceeded to give formal conjugate adducts in high yield and ee (up to 99% yield and up to 95% ee). This is the first example of the enantioselective cross-coupling of two different electron-deficient alkenes via vinylic sp2 C-H activation, and polyfunctionalized chiral compounds were obtained.
Collapse
Affiliation(s)
- Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Masafumi Kojima
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Sahoko Onoda
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Mamoru Ito
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Khake SM, Yamazaki K, Ano Y, Chatani N. Iridium(III)-Catalyzed Branch-Selective C–H Alkenylation of Aniline Derivatives with Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Wu Q, Gao P, Yuan Y. Rhodium‐Catalyzed Selective C−H Alkenylation of Indole at C4 Position. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingyi Wu
- College of Chemistry and Chemical Engineering Yangzhou University 88 Daxue South Road Yangzhou City Jiangsu Province P. R. China
| | - Pan Gao
- College of Chemistry and Chemical Engineering Yangzhou University 88 Daxue South Road Yangzhou City Jiangsu Province P. R. China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering Yangzhou University 88 Daxue South Road Yangzhou City Jiangsu Province P. R. China
| |
Collapse
|
7
|
Liu H, Lin ML, Chen YJ, Huang YH, Dong L. Rh( iii)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00779c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed three-component C–H bond functionalization protocol has been successfully applied to access complex polycyclic BINOL derivatives in which the formation of intermediate amides occurred in situ from aldehydes and amines.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Jun Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Hui Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Tanaka J, Nagashima Y, Tanaka K. Rhodium(III)-Catalyzed Oxidative ortho-Olefination of Phenyl Carbamates with Alkenes: Elucidation of Acceleration Mechanisms by Using an Unsubstituted Cyclopentadienyl Ligand. Org Lett 2020; 22:7181-7186. [PMID: 32806145 DOI: 10.1021/acs.orglett.0c02499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been established that an unsubstituted cyclopentadienyl (Cp) Rh(III) complex is an effective catalyst for the oxidative ortho-olefination of phenyl carbamates with both acrylates and styrenes under mild conditions. In addition, diolefination of a protected BINOL (1,1'-binaphthalene-2,2'-diol) proceeded in high yields and disubstituted acrylates could participate in this catalysis. Experimental and theoretical mechanistic studies elucidated that an electron-deficient nature of the unsubstituted CpRh(III) complex accelerates both the electrophilic aryl C-H rhodation and the rate-limiting alkene insertion steps.
Collapse
Affiliation(s)
- Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|